1 CS 501 Spring 2003 CS 501: Software Engineering Lecture 23 Performance of Computer Systems
2 CS 501 Spring 2003 Administration Final presentations Sign up now. Available time slots are on the Web site.
3 CS 501 Spring 2003 Performance of Computer Systems In most computer systems The cost of people is much greater than the cost of hardware Yet performance is important Future loads may be much greater than predicted A single bottleneck can slow down an entire system
4 CS 501 Spring 2003 Moore's Law Original version: The density of transistors in an integrated circuit will double every year. (Gordon Moore, Intel, 1965) Current version: Cost/performance of silicon chips doubles every 18 months.
5 CS 501 Spring 2003 Moore's Law: Rules of Thumb Planning assumptions: Every year: cost/performance of silicon chips improves 25% cost/performance of magnetic media improves 30% 10 years = 100:1 20 years = 10,000:1
6 CS 501 Spring 2003 Moore's Law and System Design Design system: 2003 Production use: 2006 Withdrawn from production: 2016 Processor speeds: Memory sizes: Disk capacity: System cost:
7 CS 501 Spring 2003 Parkinson's Law Original: Work expands to fill the time available. (C. Northcote Parkinson) Planning assumptions: (a) Demand will expand to use all the hardware available. (b) Low prices will create new demands. (c) Your software will be used on equipment that you have not envisioned.
8 CS 501 Spring 2003 False Assumptions from the Past Unix file system will never exceed 2 Gbytes (2 32 bytes). AppleTalk networks will never have more than 256 hosts (2 8 bits). GPS software will not last 1024 weeks. Nobody at Dartmouth will ever earn more than $10,000 per month. etc., etc.,.....
9 CS 501 Spring 2003 Moore's Law and the Long Term 1965 What level? 2003
10 CS 501 Spring 2003 Moore's Law and the Long Term 1965 When? What level? 2003? Within your working life?
11 CS 501 Spring 2003 Predicting System Performance Mathematical models Simulation Direct measurement Rules of thumb All require detailed understanding of the interaction between software and systems.
12 CS 501 Spring 2003 Understand the Interactions between Hardware and Software Example: execution of Client Servers domain name service TCP connection HTTP get
13 CS 501 Spring 2003 Understand the Interactions between Hardware and Software :Thread:Toolkit:ComponentPeertarget:HelloWorld run callbackLoop handleExpose paint
14 CS 501 Spring 2003 DecompressStream audioStream video fork join start state stop state Understand Interactions between Hardware and Software
15 CS 501 Spring 2003 Look for Bottlenecks Possible areas of congestion Network load Database access how many joins to build a record? Locks and sequential processing CPU performance is rarely a factor, except in mathematical algorithms. More likely bottlenecks are: Reading data from disk Moving data from memory to CPU.
16 CS 501 Spring 2003 Look for Bottlenecks: Utilization utilization = mean service time mean inter-arrival time When the utilization of any hardware component exceeds 30%, be prepared for congestion.
17 CS 501 Spring 2003 Techniques for Eliminating Bottlenecks Serial and Parallel Processing Single thread v. multi-thread e.g., Unix fork Granularity of locks on data e.g., record locking Network congestion e.g., back-off algorithms
18 CS 501 Spring 2003 Mathematical Models: Queues arrivewait in lineservicedepart Single server queue
19 CS 501 Spring 2003 Queues arrivewait in line service depart Multi-server queue
20 CS 501 Spring 2003 Mathematical Models Queueing theory Good estimates of congestion can be made for single- server queues with: arrivals that are independent, random events (Poisson process) service times that follow families of distributions (e.g., negative exponential, gamma) Many of the results can be extended to multi-server queues.
21 CS 501 Spring 2003 Behavior of Queues: Utilization mean delay utilization 10
22 CS 501 Spring 2003 Simulation Model the system as set of states and events advance simulated time determine which events occurred update state and event list repeat Discrete time simulation: Time is advanced in fixed steps (e.g., 1 millisecond) Next event simulation: Time is advanced to next event Events can be simulated by random variables (e.g., arrival of next customer, completion of disk latency)
23 CS 501 Spring 2003 Timescale Operations per second CPU instruction:1,000,000,000 Disk latency: 60 read: 25,000,000 bytes Network LAN: 10,000,000 bytes dial-up modem: 6,000 bytes
24 CS 501 Spring 2003 Measurements on Operational Systems Benchmarks: Run system on standard problem sets, sample inputs, or a simulated load on the system. Instrumentation: Clock specific events. If you have any doubt about the performance of part of a system, experiment with a simulated load.
25 CS 501 Spring 2003 Example: Performance of Disk Array Each transaction must: wait for specific disk platter wait for I/O channel signal to move heads on disk platter wait for I/O channel pause for disk rotation read data Close agreement between: results from queuing theory, simulation, and direct measurement (within 15%).