K.-H. Schmidt for the CHARMS collaboration Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Spallation Reactions - Physics and Applications.

Slides:



Advertisements
Similar presentations
M3.1 JYFL fission model Department of Physics, University of Jyväskylä, FIN-40351, Finland V.G. Khlopin Radium Institute, , St. Petersburg, Russia.
Advertisements

The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Contributions to Nuclear Data by Radiochemistry Division, BARC
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
BEAM INTENSITIES WITH EURISOL M. Valentina Ricciardi GSI, Darmstadt, Germany.
Estimation of production rates and secondary beam intensities Martin Veselský, Janka Strišovská, Jozef Klimo Institute of Physics, Slovak Academy of Sciences,
INTRODUCTION SPALLATION REACTIONS F/B ASYMMETRY FOR Au+p RANKING OF SPALLATION MODELS SUMMARY Title 24/09/2014 Sushil K. Sharma Proton induced spallation.
FUSTIPEN - Caen – 13/10/2014 L. Tassan-Got Fission fragment angular distribution and isotopic distributions Fission fragment angular distributions and.
1 HINDAS: A European Nuclear Data Program for Accelerator-Driven Systems HINDAS: A European Nuclear Data Program for Accelerator-Driven Systems A. Koning.
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
Microscopic-macroscopic approach to the nuclear fission process
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Transmutation of Spent Nuclear Fuel utilizing Spallation Reactions John Freiderich NCSS 07/27/2006.
Nuclear Reactions - II A. Nucleon-Nucleus Reactions A.1 Spallation
M. V. Ricciardi a, T. Enqvist a,[1], J. Pereira b, J. Benlliure b, M. Bernas c, E. Casarejos b, V. Henzl a, A. Kelić a, J. Taieb c,[2], K.-H. Schmidt a.
Aleksandra Kelić for the CHARMS collaboration§ GSI Darmstadt, Germany
Recent improvements in the GSI fission model
Spectator response to participants blast - experimental evidence and possible implications New tool for investigating the momentum- dependent properties.
Extension of the Liège Intra Nuclear Cascade model to light ion-induced collisions for medical and space applications D. Mancusi1, 2, P. Kaitaniemi1,
Results of the de-excitation code ABLA07 GSI Darmstadt, Germany Aleksandra Kelić M. Valentina Ricciardi Karl-Heinz Schmidt.
Lydie Giot* for the CHARMS collaboration Studies of spallation reactions at GSI * EURATOM Fellowship (FP6)
M. Valentina Ricciardi GSI Darmstadt, Germany New London, June 15-20, 2008 Fragmentation Reactions: Recent Achievements and Future Perspective.
High-resolution experiments on projectile fragments – A new approach to the properties of nuclear matter A. Kelić 1, J. Benlliure 2, T. Enqvist 1, V. Henzl.
Progress in  half lives of nuclei approaching the r-process path at N=126 José Benlliure Universidad de Santiago de Compostela, Spain INPC 2007.
Spectator response to participants blast - experimental evidence and possible implications New tool for investigating the momentum- dependent properties.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
Projectile Fragmentation at the Fragment Separator
Andreas Heinz Wright Nuclear Structure Laboratory, Yale University for the CHARMS Collaboration Symposium on Nuclear Structure and Reactions in the Era.
David Argento (some aspects of) cosmogenic nuclide production.
D. Henzlova a, M. V. Ricciardi a, J. Benlliure b, A. S. Botvina a, T. Enqvist a, A. Keli ć a, P. Napolitani a, J. Pereira b, K.-H. Schmidt a a GSI-Darmstadt,
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
High-resolution experiments on nuclear reactions and their implications for astrophysics and nuclear technology Karl-Heinz Schmidt for CHARMS.
Beam intensities with EURISOL Aleksandra Kelić, GSI-Darmstadt on behalf of the EURISOL DS Task 11 Participants and contributors: ISOLDE-CERN, CEA/Saclay,
Sub-task 4: Spallation and fragmentation reactions M. Valentina Ricciardi (GSI) in place of José Benlliure (USC) Sub-task leader: Universidad de Santiago.
Aleksandra Keli ć for CHARMS Basic Research at GSI for the Transmutation of Nuclear Waste * * Work performed in the frame of the.
EVEN-ODD EFFECT IN THE YIELDS OF NUCLEAR-REACTION PRODUCTS
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
The de-excitation code ABLA07 Aleksandra Keli ć, Maria Valentina Ricciardi and Karl-Heinz Schmidt GSI Darmstadt, Germany.
A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany and CHARMS Measurements and simulations of projectile and fission fragments.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Observation of new neutron-deficient multinucleon transfer reactions
The isospin-thermometer method to determine the freeze-out temperature in fragmentation reactions D. Henzlova a, M. V. Ricciardi a, J. Benlliure b, A.
EVIDENCE FOR TRANSIENT EFFECTS IN FISSION AND IMPORTANCE FOR NUCLIDE PRODUCTION B. Jurado 1,2, K.-H. Schmidt 1, A. Kelić 1, C. Schmitt 1, J. Benlliure.
Spectator response to the participant blast in the reaction 197 Au+ 197 Au at 1 A GeV – results of the first dedicated experiment V. Henzl for CHARMS collaboration.
Aleksandra Kelić Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Experimental approaches to spallation reactions.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Task 11.4: Spallation and fragmentation reactions David Pérez Loureiro Universidad de Santiago de Compostela, Spain Eurisol DS, Task 11 meeting,Helsinki.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Systematic Investigation of the Isotopic Distributions Measured in the Fragmentation of 124 Xe and 136 Xe Projectiles Daniela Henzlova GSI-Darmstadt, Germany.
Improvements of microscopic transport models stimulated by spallation data for incident energies from 113 to MeV Umm Al-Qura University and King.
Dynamical effects in fission reactions investigated at high excitation energy José Benlliure Universidad of Santiago de Compostela Spain.
M. Valentina Ricciardi GSI, Darmstadt ORIGIN OF THE EVEN-ODD EFFECT IN THE YIELDS FROM HIGH-ENERGY REACTIONS Its role in the study of the properties of.
Transverse and elliptic flows and stopping
SMI-06 Workshop, Groningen,
the s process: messages from stellar He burning
Overview of the fragmentation mechanism
BEAM INTENSITIES WITH EURISOL
GSI-Darmstadt, Germany
Karl-Heinz Schmidt, Aleksandra Kelić, Maria Valentina Ricciardi
J. Pereira1, P. Armbruster2, J. Benlliure1, M. Bernas3 ,A. Boudard4, E
Intermediate-mass-fragment Production in Spallation Reactions
Daniela Henzlova for CHARMS collaboration GSI-Darmstadt, Germany
M. Valentina Ricciardi GSI, Darmstadt
Neutron production in Pb/U assembly irradiated by p+, d+ at 0. 7 – 2
Cross-Section Measurement of Very Light Fission Fragments Produced in Spallation Reactions of 238U at 1 A GeV M. V. Ricciardi1, K. -H. Schmidt1, F. Rejmund1,
Microscopic-macroscopic approach to the nuclear fission process
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Daniela Henzlova GSI-Darmstadt, Germany
Presentation transcript:

K.-H. Schmidt for the CHARMS collaboration Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Spallation Reactions - Physics and Applications work supported by EU (EURISOL and EUROTRANS)

Spallation reactions – physics and applications - Definition - Applications - Experiments - Physics and models - Conclusion Outline

Definition

What is a spallation reaction ? Violent collision of nucleons (or particles) with heavy nuclei. First studied with cosmic rays. Schopper et al. Naturw. 25 (1937) 557 Collision of a μ+ of 41.2 GeV with an iron nucleus, recorded by the KARMEN detector. Disintegration (spallation) of the nucleus in many pieces. Production of a variety of different particles and fragments.

Applications

Importance of spallation reactions EOS of nuclear matter - Spallation is a way to heat nuclear matter → thermal break-up Astrophysics - Reactions of cosmic rays with interstellar medium → origin of c.r. - Nucleosynthesis in turbulence of Supernova explosions Spallation neutron sources* - Efficient way for producing neutrons ADS* (Accelerator-driven system) - Project for incinerating radioactive waste Secondary-beam facilities* - Production of rare isotopes Radioprotection and medicine

Neutron sources TypeFacility Proton beam Neutron energy Time structure Neutron flux Purpose Fission reactor ILL Grenoble --- cold, thermal, epithermal continuous n/(cm 2 s) mostly solid state Spallation neutron source SINQ Villigen 500 MeV, 1.8 mA continuous n/(cm 2 s) mostly solid state ISIS Rutherford 800 MeV, 200 μA 50 Hz, 400 ns mostly solid state SNS Oak Ridge 1 GeV, 1.4 mA 60 Hz, 695 ns mostly solid state n_TOF CERN 200 GeV/c thermal – several 100 MeV 0.42 Hz, 6 ns nuclear physics Example: Layout of SINQ → (Study of condensed matter.)

ISOL-based secondary-beam facilities FacilityProton beamOutput ISOLDE CERN≤ 1.4 GeVRare isotopes TRIUMF Vancouver200 MeVRare isotopes, neutrons, pions, muons EURISOL project1 GeVRare isotopes

ADS (Accelerator-driven system) Proton accelerator (≈ 1 GeV) Subcritical fission reactor Spallation neutron source Purpose: Incineration of nuclear waste Prototype: Myrrha (Mol, Belgium)

Experiments

Detector systems Normal kinematics (particle on nucleus) Inverse kinematics (nucleus on light target) Neutrons (d2Y/(dE dθ)) (kinematical detectors) Neutrons (total yield) (moderation and capture of neutrons) Light charged particles (d2Y/(dE dθ)) (ΔE -E, e.g. silicon) Heavy residues (a few independent yields, cumulative yields) (irradiation, off-line gamma spectroscopy / accelerator mass spectrometry) Heavy residues (Y(Z,A), dY/dv) (in-flight identification Bρ – ToF – ΔE) Neutrons and light charged particles (advanced installations at

Double-differential neutron spectra SATURNE experiment, S. Leray et al. (2002) Neutrons in forward direction reach up to the energy of the projectiles.

Spectra of light fragments PISA experiment, Jülich, F. Goldenbaum et al. (2003) Almost thermal energy spectrum of light fragments.

Excitation functions of heavy residues Titarenko et al, 2005 Independent and cumulative yields by off-line gamma spectroscopy

GSI facility → inverse kinematics  UNILAC : Up to 20 A MeV  SIS : 50 – 2000 A MeV, up to particles/spill  Beams of all stable nuclides up to 238 U

Fragment Separator (FRS)  max = 15 mrad  p/p =  1.5 % Resolution: -  (  )/   5·  Z   A / A  2.5  ToF   x 1, x 2  B   E  Z Nuclide identification ( 238 U + p, M. V. Ricciardi)

Benefit of inverse kinematics Protons (553 MeV) on lead 208 Pb (500 A MeV) on hydrogen Experiments in inverse kinematics: Complete overview on nuclide production (T 1/2 >100 ns) ; E > several 100 A MeV

Spallation of 238 U – complete overview Data measured at GSI* * Ricciardi et al, Phys. Rev. C 73 (2006) ; Bernas et al., Nucl. Phys. A 765 (2006) 197; Armbruster et al., Phys. Rev. Lett. 93 (2004) ; Taïeb et al., Nucl. Phys. A 724 (2003) 413; Bernas et al., Nucl. Phys. A 725 (2003) More than 1000 different nuclides observed. Features of spallation-evaporation / -fission / -IMF emission

Velocity distributions Typical velocity profiles are characteristic for the reaction mechanism (evaporation, fission and multifragmentation) P. Napolitani, 2007

Systematic studies

Collaboration GSI P. Armbruster, A. Bacquias, T. Enqvist, L. Giot, K. Helariutta, V. Henzl, D. Henzlova, B. Jurado, A. Keli ć, P. Nadtochy, R. Pleska č, M. V. Ricciardi, K.-H. Schmidt, C. Schmitt, F. Vives, O. Yordanov IPN-Paris L. Audouin, M. Bernas, B. Mustapha, P. Napolitani, F. Rejmund, C. Stéphan, J. Taïeb, L. Tassan-Got CEA-Saclay A. Boudard, L. Donadille, J.-E. Ducret, B. Fernandez, R. Legran, S. Leray, C. Villagrasa, C. Volant, W. Wlaz ł o University Santiago de Compostela J. Benlliure, E. Casarejos, M. Fernandez, J. Pereira CENBG-Bordeaux S. Czajkowski, M. Pravikoff 14 PhD

(New project at GSI) Neutrons Heavy fragments Exotic beam from Super-FRS Protons Target  -rays Neutrons Protons Tracking detectors:  E, x, y, ToF, B  Neutrons High-resolution spectrometer - Full identification of heavy residues with simultaneous measurement of neutrons, light charged particles and gammas with new R3B magnetic spectrometer.  Aiming for a kinematically complete experiment.

Physics and models

Nucleon-nucleus collision at 1 A GeV Ep 10 MeV137 MeV/c9.03 fm 100 MeV443 MeV/c2.79 fm 1 GeV1692 MeV/c0.73 fm Decisive parameter: de Broglie wavelength of a nucleon: =h/p Compared to nuclear radius (r = 1.16 fm  A 1/3 ) or range of nuclear force (  1 fm) Spallation reaction ≈ collisions of individual nucleons ! No consistent uniform description of the spallation process available.

Modeling of spallation reactions 1. Intranuclear cascade (INCL, ISABEL,...) (quasi-free nucleon- nucleon collisions → high-energy n, p..) 2. Exciton model (sequence of particle- hole excitations → pre-equilibrium emission, included in INCL) Evaporation code (ABLA07,...) (evaporation of particles and fragments, fission) 3. Multifragmentation (expansion and thermal break-up) Specialized codes for different steps of the reaction

Thermal expansion ρ~e S level density S=2√(aE*) Fermi gas a~V level-density parameter grows with volume E* = E 0 * - c·(V-V 0 ) 2 parabolic dependence of nuclear binding on volume or density S~√(V(E 0 *-c · (V-V 0 ) 2 ) Statistical model: The nucleus assumes the configuration which offers maximum number of states. This is also true for the volume.

Multifragmentation Expansion may lead to multifragmentation. (SMM, ABLA07)

The evaporation corridor Decisive influence of evaporation on the nuclide distribution. Residues tend to follow the evaporation corridor (Dufour, Charity).

Fission Fission barrier → Interplay of surface and Coulomb energy.

General features of fission Potential barrier as a function of mass asymmetry. Symmetric fission for heavy systems

Experimental information – low energy K.-H. Schmidt et al., NPA 665 (2000) 221 Experimental survey at GSI by use of secondary beams

Modeling multi-modal fission E* = 60 MeV 20 MeV 10 MeV Many different nuclei with different E* contribute to fission. black: data, red: simulation with ABLA07

Dynamics of fission Fission is a dynamical process, described by the Langevin equation.

Langevin trajectories Fission is hindered by dynamics with respect to evaporation. Fission barrier Ground state

Generalized fission Potential barrier as a function of mass asymmetry. Continuous mass distribution from particle evaporation to symmetric fission (Moretto)

Emission of intermediate-mass fragments Evaporation of IMF (very asymmetric fission) must be considered. (only n,p,α) (n, p, all fragments) Data: 209 Bi + p Yu. E. Titarenko et al., Nucl. Instrum. Methods A 562 (2006) 801

Model Calculation INCL4 + ABLA07

Conclusions - Many fields of application → high interest for good understanding - Two experimental approaches - Direct kinematics - light particles: yields and energy distributions – heavy residues: only long-lived species and cumulative yields - Inverse kinematics – heavy residues: complete overview (≈1000 nuclides / system) - velocity spectra: information on reaction mechanism - new-generation (complete) experiments at - Elaborate codes for the reaction stages (e.g. INCL4 + ABLA07) - INC → (Exciton) → ( Thermal break-up) → Evaporation-fission Spallation reactions

Additional slides

Experimental challenge Short-lived as well as stable nuclei have to be detected.

Excitation functions Titarenko et al, 2005 Independent and cumulative yields - About 100 nuclei/system - Uncertainty 7 – 30 % Additional information: - Miah et al, Nucl. Sc. Tech. Suppl. 2 (2002) Schiekel et al, Nucl. Instr. Meth. B114 (1996) 91 - Adilbish et al, Radiochem. Radioanal. Lett. 45 (1980) Chu et al, Phys. Rev. C 15 (1977) 352

Velocity distributions 238 U (1 AGeV) + 2 H Pereira, PhD thesis For each nucleus: production cross section, velocity and production mechanism FISSION FRAGMENTATION

Experimental progress by inverse kinematics ProjectileTargetEnergy [A GeV] 56 Fe 1 H, 2 H ,124 Xe 1,2 H, Be, Ti, Pb0.2, 0.5, Au 1H1H Pb 1,2 H, Ti0.5, U 1,2 H, Ti, Pb1 Data accuracy: Statistic: below 3% Systematic: % More than 1000 nuclei/system measured Data available at: