Recent developments in cc, cn and cs spectroscopy: X(3872), D sJ *(2317) + and D s1 *(2457) +. 1) Basic physics. How well qq worked (charmonium e.g.) 2)

Slides:



Advertisements
Similar presentations
The Status of Exotics * 1) Color singlets and QCD exotica 2) Early history: states, spectrum and decays 3) LGT predictions 4) Current expt. candidates.
Advertisements

Charmonium Aps: 1) GSI cross secs, & 2) nuclear forces Ted Barnes Physics Div. ORNL and Dept. of Physics, U.Tenn. (and p.t. DOE ONP) INT Nov For.
Spectroscopy of Heavy Quarkonia Holger Stöck University of Florida Representing the CLEO Collaboration 6 th International Conference on Hyperons, Charm.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
X(3872) Review T.Aushev LPHE seminar. 8 February 2010T.Aushev, LPHE seminar2 Introduction Era of the new family of particles, named XYZ, started from.
Projected Non-perturbative QCD Studies with CLEO-c QCD is felt to be the theory of strong interaction, BUT… spectroscopy incomplete Exotica predicted,
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
Evidence for Narrow D s  0 and D s   0 states Jianchun Wang 05/09/03 Directly involved: Dave Cinabro Selina Li Sheldon Stone Jon Urheim Jianchun Wang.
Exotica and CLEO 1) A short reminder about cc -> exotica 2) Spectrum, higher charmonia 3) Strong decays (main topic) 4) EM decays (in paper.
New Results and Prospects of Light Hadron Spectroscopy Shan JIN Institute of High Energy Physics (IHEP) Presented by Yi-Fang Wang.
Non-standard mesons Stephen L. Olsen University of Hawai’i Representing Belle Fermilab seminar May 10, 2005.
New Particles X(3872) Y(4260) X(3940) University of Hawai’i Future of Heavy Flavors ИТЗФ 7/23-24/06 Z(3930) Y(3940) Ѕтефан Олавич ????
R.D. Matheus, F. S. N., M. Nielsen and C.M. Zanetti IF – USP BRAZIL based on: X(3872) as a charmonium-molecule mixture: mass and decay width arXiv:
Charmonium Decays in CLEO Tomasz Skwarnicki Syracuse University I will concentrate on the recent results. Separate talk covering Y(4260).
Searches for exotic mesons Stephen L. Olsen University of Hawai’i DOE site visit Aug 22, 2005 cc u d u u d u uc u c Multi-quark molecules qq-gluon hybrids.
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
Discovery of D sJ (2463) + (part II) JC Wang CLEO Meeting 06/20/03 Authors Dave Cinabro Selina Li Sheldon Stone Jon Urheim Jianchun Wang Committees Roy.
S.L.Olsen Hawai’i Exotic Hadrons WS Nara May 27,2005 Non-standard mesons S.L.Olsen Hawai’i.
The hidden charm of hadrons Stephen L. Olsen University of Hawai’i Representing Belle Invited talk at the Tampa APS/DPF meeting, April 19, 2005.
From Heavy Q to Light q Systems 1. What hadrons exist in nature? Quarkonia / Baryons / Hybrids / Glueballs / Multiquarks 2. Recent developments in cc (noises.
Charmonium Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn.
(A Few) Recent Developments in Hadron Spectroscopy (setting the stage for subsequent spectroscopy talks) Topics: I. Basic hadronics II. Some exciting areas.
GlueX + Exotic Hadron Spectroscopy 1. Hadrons Exotica: glueballs, hybrids and multiquarks/molecules 3. Hybrids: theoretical expectations and experimental.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Structure of the exotic heavy mesons Makoto Takizawa (Showa Pharmaceutical Univ.) Collaborators Sachiko Takeuchi (Japan College of Social Work) Kiyotaka.
The charmonium-molecule hybrid structure of the X(3872) Makoto Takizawa (Showa Pharmaceutical Univ.) Sachiko Takeuchi (Japan College of Social Work) Kiyotaka.
Charmed Meson Spectroscopy Robert K. Kutschke Fermilab HQL04 June 4, 2004.
1 The theoretical understanding of Y(4260) CONG-FENG QIAO Graduate School, Chinese Academy of Sciences SEPT 2006, DESY.
Non-standard mesons in BES III?
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
cc spectroscopy at elle S.L.Olsen Hawaii QWG 2004 Worksop IHEP Beijing _.
Andrzej Bożek (IFJ PAN, Kraków) B hadron decays to open charm production in B-factories BEACH B hadron decays to open charm at B-factories A.Bożek.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
New hadrons BaBar Maurizio Lo Vetere University of Genova & INFN Representing the Collaboration Particles and Nuclei International Conference.
Excited Charmonium in e + e - annihilation and B decay K-T Chao Peking University QWG Workshop, Beijing, Oct , 2004.
June 16-20, 2005 北京 1 Atsushi Hosaka (RCNP, Osaka Univ) Decay and production of  + hep-ph/ , PRD71: (2005) A. H., M. Oka and T. Shinozaki.
Charmonium Production at PANDA 1. Estimates of associated charmonium cross sections at PANDA  ( pp c + m )  ( pp   cc + m ) 2. Comments re vector.
Decay properties of D and D s mesons Bhavin Patel Department of Physics Sardar Patel University Vallabh Vidyanagar , Gujarat, INDIA.
Opportunities in Meson Spectroscopy: 1) The big questions 2) Current topics quarkonia quarkonia hybrids hybrids glueballs glueballs multiquarks multiquarks.
New Resonances at Belle Jolanta Brodzicka INP Kraków, for the Belle Collaboration ICFP 2005 October 4 th, 2005 Taiwan Outline  ‘ old’ X(3872) properties.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
Strong Decays (open flavor) 1) Big Questions 2) Strong Decays: Historical introduction 3) Status and prospects in quarkonia + exotica 4) Future: Unquenching.
1 Hadron Spectroscopy at BABAR BY Usha Mallik (University of Iowa) Representing The BaBar Collaboration The International Light-Cone Workshop July 7, 2005.
Hadron 2015 / A. Valcarce1/19 Unraveling the pattern of XYZ mesons. Phys. Lett. B 736, 325 (2014) Phys. Rev. Lett. 103, (2009); Phys. Rev. D 79,
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Relating holographic QCD models to hidden local symmetry models Property of X(3872) as a hadronic molecule with negative parity Masayasu Harada “New Hadons”
Higher Charmonium 1) Spectrum 2) Strong decays (main topic) 3) L’oops Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn. GHP2004 Fermilab, Oct.
Recent developments in charm meson spectroscopy: Chaos, confusion and craziness. Basic hadronics Making charmonium Spectrum of charmonium Exciting new.
Update on Charmonium Theory T.Barnes ORNL/U.Tenn. HADRON09 11/30/09 criteria: some recent theory likely of relevance to cc expt. please.
WA102 and Meson Spectroscopy It may be relevant to the PD … a short reminder. … a short reminder. Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn. Charmonium.
QCD = quantum chromodynamics, ca. 1973
The XYZs of cc: 1. Charmonium reminder. 2. The new states:
Molecular Structures in Hidden Charm Meson and Charmed Baryon Spectrum
Polarization in charmless B VV decays
Maurizio Lo Vetere University of Genova & INFN
Observation of the DsJ(2463)Dspo & Confirmation of the DsJ(2317)Dspo
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
Possible Interpretations of DsJ(2632)
DsJ* ‘s & charmed strange baryons at Belle
University of Minnesota on behalf of the CLEO Collaboration
Charmonium spectroscopy above thresholds
CONVENTIONAL CHARMONIA
Hot Topic from Belle : Recent results on quarkonia
Mixing of scalar meson and glueball
Understanding DsJ*(2317) and DsJ(2460)
New States Containing Charm at BABAR
Presentation transcript:

Recent developments in cc, cn and cs spectroscopy: X(3872), D sJ *(2317) + and D s1 *(2457) +. 1) Basic physics. How well qq worked (charmonium e.g.) 2) The X(3872), D sJ * + (2317) and D s1 * + (2457). 3) What we are reconsidering. (This is a story in progress…) Ted Barnes Physics Div. ORNL Dept. of Phys. and Astro., U.Tenn. HQL2004

Small qq separation Large qq separation basic physics of QCD

The QCD flux tube (LGT, G.Bali et al; hep-ph/ ) LGT simulation showing the QCD flux tube Q Q R = 1.2 [fm] “funnel-shaped” V QQ (R) Coul. (OGE) linear conft. (str. tens. = 16 T)

Charmonium (cc) A nice example of a QQ spectrum. Expt. states (blue) are shown with the usual L classification. Above 3.73 GeV: Open charm strong decays (DD, DD* …): broader states except 1D 2 2   2  3.73 GeV Below 3.73 GeV: Annihilation and EM decays. , KK*,  cc, , l  l ..): narrow states.

 s = b = [GeV 2 ] m c = [GeV]  = [GeV] Fitted and predicted cc spectrum Coulomb (OGE) + linear scalar conft. potential model blue = expt, red = theory. 3 D 3 (3810) 3 D 2 (3803) 3 D 1 (3787) 1 D 2 (3802)

cc from LGT   exotic cc-H at 4.4 GeV oops…   cc has been withdrawn. Small L=2 hfs. What about LGT??? An e.g.: X.Liao and T.Manke, hep-lat/ (quenched – no decay loops) Broadly consistent with the cc potential model spectrum. No radiative or strong decay predictions yet.

        J   D   D*   MeV Accidental agreement? X = cc (2  or 2  or …), or a DD* molecule?  MeV Alas the known  = 3 D 1 cc. If the X(3872) is 1D cc, an L-excited multiplet is split much more than expected assuming scalar confinement. n.b.  D   D*   MeV MeV Belle Collab. K.Abe et al, hep-ex/ ; S.-K.Choi et al, hep-ex/ , PRL91 (2003) X(3872) from KEK

X(3872) confirmation (from Fermilab) G.Bauer, QWG presentation, 20 Sept n.b. most recent CDF II: M = pm 0.7 pm 0.4 MeV CDF II Collab. D.Acosta et al, hep-ex/ , PRL to appear OK, it’s real… n.b. molecule.ne.multiquark X(3872) also confirmed by D0 Collab. at Fermilab. Perhaps also seen by BaBar

The trouble with multiquarks: “Fall-Apart Decay” (actually not a decay at all: no H I ) Multiquark models found that most channels showed short distance repulsion: E(cluster) > M 1 + M 2. Thus no bound states. Only 1+2 repulsive scattering. nuclei and hypernuclei weak int-R attraction allows “molecules” E(cluster) < M 1 + M 2, bag model: u 2 d 2 s 2 H-dibaryon, M H - M  =  80 MeV. n.b.   hypernuclei exist, so this H was wrong. Exceptions: V NN (R)  2m N RR “V  (R)”  2m  Q 2 q 2 (Q = b, c?) 2) 1) 3) Heavy-light

X(3872 ) Belle Collab. K.Abe et al, hep-ex/ ; S.-K.Choi et al, hep-ex/ , PRL91 (2003)         J   D   D*   MeV Accidental agreement? X = cc 2  or 2  or …, or a molecular (DD*) state?  MeV  = 3 D 1 cc. If the X(3872) is 1D cc, an L-multiplet is split much more than expected assuming scalar conft. n.b.  D   D*   MeV MeV Charm in nuclear physics???

cc from the “standard” potential model S.Godfrey and N.Isgur, PRD32, 189 (1985). 2  3   ( 3 D 2 is a typo) 2  The obvious guess, if cc, is 2  or 2 . No open-flavor strong decays: narrow states. A more conventional possibility: X(3872) = cc?

Charmonium Options for the X(3872) T.Barnes and S.Godfrey, hep-ph/ , PRD69 (2004) (n.b. Eichten, Lane and Quigg have similar results.) Our approach: Assume all conceivable cc assignments for the X(3872) : all 8 states in the 1D and 2P cc multiplets. Nominal Godfrey-Isgur masses were 3 D 3 (3849) 2 3 P 2 (3979) 3 D 2 (3838) 2 3 P 1 (3953) 3 D 1 (3.82) [  (3770)] 2 3 P 0 (3916) 1 D 2 (3837) 2 1 P 1 (3956) We assigned a mass of 3872 MeV to each state and calculated the resulting strong and EM partial widths.

Experimental R summary (2003 PDG) Very interesting open experimental question: Do strong decays use the 3 P 0 model decay mechanism or the Cornell model decay mechanism or … ?  br  vector confinement??? controversial e  e , hence 1    cc states only. How do open-flavor strong decays happen at the QCD (q-g) level? “Cornell” decay model: (1980s cc papers) (cc)  (cn)(nc) coupling from qq pair production by linear confining interaction. Absolute norm of  is fixed!

The 3 P 0 decay model: qq pair production with vacuum quantum numbers. L I = g  A standard for light hadron decays. It works for D/S in b 1 . The relation to QCD is obscure.

What are the total widths of cc states above 3.73 GeV? (These are dominated by open-flavor decays.) < 2.3 MeV 23.6(2.7) MeV 52(10) MeV 43(15) MeV 78(20) MeV PDG values X(3872)

Strong Widths: 3 P 0 Decay Model 1D 3 D [MeV] 3 D D 1 43 [MeV] 1 D 2 - DD 23.6(2.7) [MeV] Parameters are  = 0.4 (from light meson decays), meson masses and wfns. X(3872) (New strong and EM decay results from Barnes, Godfrey and Swanson, in prep.)

Strong Widths: 3 P 0 Decay Model 1F 3 F [MeV] 3 F 3 87 [MeV] 3 F [MeV] 1 F 3 64 [MeV] DD DD* D*D* D s X(3872)

Strong Widths: 3 P 0 Decay Model 3 3 S 1 74 [MeV] 3 1 S 0 67 [MeV] 3S DD DD* D*D* D s X(3872) 52(10) MeV

 partial widths [MeV] ( 3 P 0 decay model): DD = 0.1 DD* = 32.9 D*D* = 33.4 [multiamp. mode] D s D s = 7.8 Theor R from the Cornell model. Eichten et al, PRD21, 203 (1980): 4040 DD DD* D*D* famous nodal suppression of a 3 3 S 1  (4040) cc  DD  D*D* amplitudes ( 3 P 0 decay model): 1 P 1 =  P 1 =  =    1 P 1 5 F 1 = 0 std. cc and D meson SHO wfn. length scale

Strong Widths: 3 P 0 Decay Model 2D 2 3 D [MeV] 2 3 D 2 93 [MeV] 2 3 D 1 74 [MeV] 2 1 D [MeV] DD DD* D*D* D s D s D s * 78(20) [MeV]

 partial widths [MeV] ( 3 P 0 decay model): DD = 16.3 DD* = 0.4 D*D* = 35.3 [multiamp. mode] D s D s = 8.0 D s D s * = 14.1 Theor R from the Cornell model. Eichten et al, PRD21, 203 (1980): 4040 DD DD* D*D* std. cc SHO wfn. length scale  D*D* amplitudes: ( 3 P 0 decay model): 1 P 1 =  P 1 =     1 P 1 5 F 1 =  0.141

E1 Radiative Partial Widths 1D -> 1P 3 D 3  3 P [keV] 3 D 2  3 P 2 70 [keV] 3 P [keV] 3 D 1  3 P 2 5 [keV] 3 P [keV] 3 P [keV] 1 D 2  1 P [keV] X(3872)

If X = 1D cc: Total width eliminates only 3 D 1. Large, ca. 300 – 500 keV E1 radiative partial widths to  J and  h c are predicted for 1D assignments ( 3 D 3, 3 D 2 ) and 1 D 2. If  tot = 1 MeV these are 30% - 50% radiative b.f.s! The pattern of final P-wave cc states you populate identifies the initial cc state. If X = 1 D 2 cc, you are “forced” to discover the h c ! If X = 2P cc: 2 3 P 1 and 2 1 P 1 are possible based on total width alone. These assignments predict weaker but perhaps accessible radiative branches to J, ’ and  c  c ’ respectively. NOT to  J states. (E1 changes parity.) Concl: We cannot yet exclude 5 of the 8 1D and 2P cc assignments. However, we do see how to proceed.

DD* molecule options This possibility is suggested by the similarity in mass, N.A.Tornqvist, PRL67, 556 (1991); hep-ph/ F.E.Close and P.R.Page, hep-ph/ , PLB578, 119 (2004). C.Y.Wong, hep-ph/ E.Braaten and M.Kusunoki, hep-ph/ , PRD69, (2004). E.S.Swanson, hep-ph/ n.b. The suggestion of charm meson molecules dates back to 1976:  (4040) as a D*D* molecule; (Voloshin and Okun; deRujula, Georgi and Glashow).  X MeV D  D*  MeV (I prefer this assignment.) n.b.2 Could the signal simply be a cusp due to new DD* channels opening? (A.Bacher query.) No one has considered this.

Interesting prediction of molecule decay modes: E.Swanson, hep-ph/ : 1  D o D* o molecule with additional comps. due to rescattering. J  “  ” J    Predicted total width ca. = expt limit (2 MeV). Very characteristic mix of isospins: comparable J     and  J  “  ”  decay modes expected. Nothing about the X(3872) is input: this all follows from O  E and C.I.

X(3872) summary: The X(3872) is a new state reported by Belle, CDF and DZERO. It is seen in only one mode: J   . It is very narrow,  < 2.3 MeV. The limit on   is comparable to the observed J   . The mass suggests that the X is a deuteronlike D o D* o -molecule. Naïvely, this suggests a narrow total X width of ca. 50 keV and 3:2 bfs to D o D o   and D o D o . However, internal rescatter to (cc)(nn) may be important. This predicts  ( X ) = 2 MeV and remarkable, comparable “isospin violating” b.f.s to J   and J. The bleedin’ obvious decay mode J    should be searched for, to test C( X ) and establish whether     =    Possible “wrong-mass” cc assignments to 1D and 2P levels can be tested by their (often large) E1 radiative transitions to (cc).

Where it all started. BABAR: D * sJ (2317) + in D s +  0 D.Aubert et al. (BABAR Collab.), PRL90, (2003). M = 2317 MeV (2 D s channels),  < 9 MeV (expt. resolution) (Theorists expected L=1 cs states, e.g. J P =0 +, but with a LARGE width and at a much higher mass.) … “Who ordered that !?”  I.I.Rabi (about the  - ) Since confirmed by CLEO, Belle and FOCUS.

And another! CLEO: D * sJ (2463) + in D s * +  0 Since confirmed by BABAR and Belle. M = 2457 MeV. D.Besson et al. (CLEO Collab.), PRD68, (2003). M = 2463 MeV,  < 7 MeV (expt. resolution) A J P =1 + partner of the possibly 0 + D * sJ (2317) + cs ?

(Godfrey and Isgur potential model.) Prev. (narrow) expt. states in gray. DK threshold

Experimental D states (PDG 2002) vs Godfrey-Isgur potential model. Is the same discrepancy evident in the cn sector?

The new broad D states. The 1+ states are not especially low wrt QM. However the status of the 0+ is unclear. (2 expts. differ by 100 MeV.)

Theorists’ responses to the new D sJ * states Approx. 80 theoretical papers have been published since the discovery. There are two general schools of thought: 1) They are cs quark model mesons, albeit at a much lower mass than expected by the usual NRQPMs. [Fermilab] 2) They are “multiquark” states. (“DK molecules”) [UT,Oxon,Weiz.] 3) They are somewhere between 1) and 2). [reality]

M.A.Nowak, M.Rho and I.Zahed, PRD48, 4370 (1993). W.A.Bardeen and C.T.Hill, PRD49, 409 (1994) BEH, PRD68, (2003).

2. Multiquark states (DK molecules) [UT,Oxon,Weiz.] T.Barnes, F.E.Close and H.J.Lipkin, hep-ph/ , PRD68, (2003). 3. reality Reminiscent of Weinstein and Isgur’s “KK molecules”. (loop effects now being evaluated)

L’oops

Future: “Unquenching the quark model” Virtual meson decay loop effects, qq M1 M2 mixing. D sJ * states (mixed cs DK …, how large is the mixing?) Are the states close to |cs> or |DK>, or are both basis states important? A perennial question: accuracy of the valence approximation. Also LGT-relevant (they are usually quenched too).

S.Godfrey and R.Kokoski, PRD43, 1679 (1991). Decays of S- and P-wave D D s B and B s flavor mesons. 3 P 0 “flux tube” decay model. The L=1 0+ and 1+ cs “D s ” mesons are predicted to Have rather large total widths, MeV. (= broad to unobservably broad). Charmed meson decays (God91) How large are decay loop mixing effects?

J P = 1 + (2457 channel) J P = 0 + (2317 channel) The 0 + and 1 + channels are predicted to have very large DK and D*K decay couplings. This supports the picture of strongly mixed | D sJ *+ (2317,2457)> = |cs> + |(cn)(ns)> states. Evaluation of mixing in progress. Initial estimates for cc …

L’oops [ J/  - M 1 M 2 - J/  3 P 0 decay model, std. params. and SHO wfns. M 1 M 2  M [J/  ] P M 1 M 2 [J/  ] DD  MeV DD*  MeV D*D*  MeV D s D s  MeV D s D s *  MeV D s *D s *  MeV famous 1 : 4 : 7 ratio DD : DD* : D*D* Sum = MeV P cc = 65.% VERY LARGE mass shift and large non-cc component! Can the QM really accommodate such large mass shifts??? Other “cc” states? 1/2 : 2 : 7/2 D s D s : D s D s * : D s *D s *

L’oops [ cc - M 1 M 2 - cc  3 P 0 decay model, std. params. and SHO wfns. Init. Sum  M P cc J/  MeV 0.65  c MeV 0.71  MeV 0.43  1  MeV 0.46  0  MeV 0.53 h c  MeV 0.46 Aha? The large mass shifts are all similar; the relative shifts are “moderate”. Continuum components are large; transitions (e.g. E1 radiative) will have to be recalculated, including transitions within the continuum. Apparently we CAN expect D sJ -sized (100 MeV) relative mass shifts due to decay loops in extreme cases. cs system to be considered. Beware quenched LGT!

Summary and conclusions: 1) Three new narrow mesons containing at least cc and cs have been reported: X(3872) D * sJ (2317) + D * sJ (2457) + 2) Theorists expected similar (?) states but at rather different masses. The cs states were expected to have very broad strong decay widths. The interpretation of the new states (qq / two-meson molecules / lin.comb.) is being discussed. Decay loops determine mixing. Radiative transitions should allow definitive tests of qq assignments. There are E1 rate predictions for D * sJ  D s +  and  D s * +  assuming cs, analogous to the X(3872) rates we discussed. (e.g. S.Godfrey, hep-ph/ , PLB568, 254 (2003).) D * sJ (2457) +  D s +  reported recently by Belle; strongly favors J=1, as expected. 3) Useful future measurements: A. Precise E1 cc (CLEO;  ’,  (3770) and  ) and D * sJ radiative rates; B. Strong decay model checks (4040, 4159  DD, DD*; D*D* PWA) (BES,CLEO). n.b  (  ) (at ca MeV) a D * sJ source? (expect few % BFs to D * s0 (2317) D * s and D * s1 (2457) D s )