A 20/30 Gbps CMOS Backplane Driver with Digital Pre-emphasis Paul Westergaard, Timothy Dickson, and Sorin Voinigescu University of Toronto Canada.

Slides:



Advertisements
Similar presentations
6-k 43-Gb/s Differential Transimpedance-Limiting Amplifiers with Auto-zero Feedback and High Dynamic Range H. Tran 1, F. Pera 2, D.S. McPherson 1, D. Viorel.
Advertisements

B. BOUDJELIDA 2 nd SKADS Workshop October 2007 Large gate periphery InGaAs/InAlAs pHEMT: Measurement and Modelling for LNA fabrication B. Boudjelida,
ASYNC07 High Rate Wave-pipelined Asynchronous On-chip Bit-serial Data Link R. Dobkin, T. Liran, Y. Perelman, A. Kolodny, R. Ginosar Technion – Israel Institute.
CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
T. Chalvatzis, University of Toronto - ESSCIRC Outline Motivation Decision Circuit Design Measurement Results Summary.
Design and Application of Power Optimized High-Speed CMOS Frequency Dividers.
1 A Low Power CMOS Low Noise Amplifier for Ultra-wideband Wireless Applications 指導教授 : 林志明 學生 : 黃世一
RMO4C-2 A Low-Noise 40-GS/s Continuous-Time Bandpass ΔΣ ADC Centered at 2 GHz Theo Chalvatzis and Sorin P. Voinigescu The Edward S. Rogers Sr. Department.
Design of High-Speed Laser Driver Using a Standard CMOS Technology for Optical Data Transmission Dissertation Defense Presentation By Seok Hun Hyun Advisor:
1/42 Changkun Park Title Dual mode RF CMOS Power Amplifier with transformer for polar transmitters March. 26, 2007 Changkun Park Wave Embedded Integrated.
A Zero-IF 60GHz Transceiver in 65nm CMOS with > 3.5Gb/s Links
Low Power RF/Analog Amplifier Design Tong Zhang Auburn University Tong Zhang Auburn University.
Ultra-Low Power On-Chip Differential Interconnects Using High-Resolution Comparator Hao Liu and Chung-Kuan Cheng University of California, San Diego 10/22/2012.
RF Wakeup Sensor – On-Demand Wakeup for Zero Idle Listening and Zero Sleep Delay.
60-GHz PA and LNA in 90-nm RF-CMOS
学术报告 A Low Noise Amplifier For 5.2GHz Application Using 0.18um CMOS 蔡天昊
High-Speed Circuits & Systems Laboratory Electronic Circuits for Optical Systems : Transimpedance Amplifier (TIA) Jin-Sung Youn
ECE1352F University of Toronto 1 60 GHz Radio Circuit Blocks 60 GHz Radio Circuit Blocks Analog Integrated Circuit Design ECE1352F Theodoros Chalvatzis.
University of Toronto (TH2B - 01) 65-GHz Doppler Sensor with On-Chip Antenna in 0.18µm SiGe BiCMOS Terry Yao, Lamia Tchoketch-Kebir, Olga Yuryevich, Michael.
PilJae Park 2/23/2007 Slide 1 Transmit/Receive (T/R) Switch Topology Comparison Series-series Topology Series-shunt Topology High impedance block  In.
Chihou Lee, Terry Yao, Alain Mangan, Kenneth Yau, Miles Copeland*, Sorin Voinigescu University of Toronto - Edward S. Rogers, Sr. Dept. of Electrical &
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
A 77-79GHz Doppler Radar Transceiver in Silicon
CSICS 26 Oct A 49-Gb/s, 7-Tap Transversal Filter in 0.18  m SiGe BiCMOS for Backplane Equalization Altan Hazneci and Sorin Voinigescu Edward S.
Design of LNA at 2.4 GHz Using 0.25 µm Technology
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
Study of 60GHz Wireless Network & Circuit Ahn Yong-joon.
Design of a GHz Low-Voltage, Low-Power CMOS Low-Noise Amplifier for Ultra-wideband Receivers Microwave Conference Proceedings, APMC 2005.
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
A Linear Regulator with Fast Digital Control for Biasing of Integrated DC-DC Converters A-VLSI class presentation Adopted from isscc Presented by: Siamak.
S. -L. Jang, Senior Member, IEEE, S. -H. Huang, C. -F. Lee, and M. -H
October 31st, 2005CSICS Presentation1 A 1-Tap 40-Gbps Decision Feedback Equalizer in a  m SiGe BiCMOS Technology Adesh Garg, Anthony Chan Carusone.
3V CMOS Rail to Rail Op-Amp
High-Speed Track-and-Hold Circuit Design October 17th, 2012 Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne)
Presenter: Chun-Han Hou ( 侯 鈞 瀚)
A 1.5-V 6-10-GHz Low LO-Power Broadband CMOS Folded-Mirror Mixer for UWB Radio H.-W. Chung, H.-C. Kuo, and H.-R. Chuang Institute of Computer and Communication.
Interconnect Focus Center e¯e¯ e¯e¯ e¯e¯ e¯e¯ IWSM 2001Sam, Chandrakasan, and Boning – MIT Variation Issues in On-Chip Optical Clock Distribution S. L.
A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity Yoon, J.; Kim, H.; Park, C.; Yang, J.; Song, H.; Lee, S.; Kim, B.; Microwave Theory.
Measurement of Integrated PA-to-LNA Isolation on Si CMOS Chip Ryo Minami , JeeYoung Hong , Kenichi Okada , and Akira Matsuzawa Tokyo Institute of Technology,
A High-Gain, Low-Noise, +6dBm PA in 90nm CMOS for 60-GHz Radio
A 2-GHz Direct Sampling ΔΣ Tunable Receiver with 40-GHz Sampling Clock and on-chip PLL T. Chalvatzis 1, T. O. Dickson 1,2 and S. P. Voinigescu 1 1 University.
Homework Statement Mao-Cheng Chiu National Chiao -Tung University Department of Electronics Engineering.
A NEW METHOD TO STABILIZE HIGH FREQUENCY HIGH GAIN CMOS LNA RF Communications Systems-on-chip Primavera 2007 Pierpaolo Passarelli.
An Ultra-low Voltage UWB CMOS Low Noise Amplifier Presenter: Chun-Han Hou ( 侯 鈞 瀚 ) 1 Yueh-Hua Yu, Yi-Jan Emery Chen, and Deukhyoun Heo* Department of.
1 Your Name Your Department or Company Date, 2015.
RFIC – Atlanta June 15-17, 2008 RTU1A-5 A 25 GHz 3.3 dB NF Low Noise Amplifier based upon Slow Wave Transmission Lines and the 0.18 μm CMOS Technology.
An Oscillator Design Based on Bi-CMOS Differential Amplifier Using Standard SiGe Process Cher-Shiung Tsai, Ming-Hsin Lin, Ping-Feng Wu, Chang-Yu Li, Yu-Nan.
Adviser : Hwi-Ming Wang Student : Wei-Guo Zhang Date : 2009/7/14
RFIC – Atlanta June 15-17, 2008 RMO1C-3 An ultra low power LNA with 15dB gain and 4.4db NF in 90nm CMOS process for 60 GHz phase array radio Emanuel Cohen.
Tod Dickson University of Toronto June 9, 2005
1 Low-Voltage BiCMOS Circuits for High-Speed Data Links up to 80 Gb/s Tod Dickson University of Toronto June 24, 2005.
© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson 1, Keith A. Tang 1, Kenneth H.K. Yau 1, Pascal.
Rakshith Venkatesh 14/27/2009. What is an RF Low Noise Amplifier? The low-noise amplifier (LNA) is a special type of amplifier used in the receiver side.
Timothy O. Dickson and Sorin P. Voinigescu Edward S. Rogers, Sr. Dept of Electrical and Computer Engineering University of Toronto CSICS November 15, 2006.
3-Stage Low Noise Amplifier Design at 12Ghz
Ekaterina Laskin, Sean T. Nicolson, Sorin P. Voinigescu
A 3-V Fully Differential Distributed Limiting Driver for 40 Gb/s Optical Transmission Systems D.S. McPherson, F. Pera, M. Tazlauanu, S.P. Voinigescu Quake.
Wei-chih A Low-Voltage Low-Power Sigma-Delta Modulator for Broadband Analog-to-Digital Conversion IEEE Journal Of Solid-state Circuits, Vol. 40, No. 9,
M. Atef, Hong Chen, and H. Zimmermann Vienna University of Technology
High Gain Transimpedance Amplifier with Current Mirror Load By: Mohamed Atef Electrical Engineering Department Assiut University Assiut, Egypt.
Communication 40 GHz Anurag Nigam.
A High-Dynamic-Range W-band
Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology
Technology Perspective and results with mHEMTs
A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique Microwave and Wireless Components Letters, IEEE Volume 17,  Issue.
A Novel 1. 5V CMFB CMOS Down-Conversion Mixer Design for IEEE 802
All-Synthesizable 6Gbps Voltage-Mode Transmitter for Serial Link
5.8GHz CMOS 射頻前端接收電路 晶片設計實作 5.8GHz CMOS Front-End Circuit Design
A Large Swing, 40-Gb/s SiGe BiCMOS Driver with Adjustable Pre-Emphasis for Data Transmission over 75W Coaxial Cable Ricardo A. Aroca & Sorin P. Voinigescu.
All-Synthesizable 6Gbps Voltage-Mode Transmitter for Serial Link
Presentation transcript:

A 20/30 Gbps CMOS Backplane Driver with Digital Pre-emphasis Paul Westergaard, Timothy Dickson, and Sorin Voinigescu University of Toronto Canada

Outline Motivation Design Goals Circuit Description and Design Experimental Results Summary and Conclusion

Motivation Application Serial inter-chip communications over backplanes at 20-Gb/s. Unfulfilled Needs CMOS implementation over 10-Gbps > 30 dB dynamic range, low-power Programmable width and height pre- emphasis to increase receiver simplicity Prior Art Previous CMOS backplane drivers have only achieved 10 Gb/s data rate.

Design Goals 30-Gb/s main path operation without pre-emphasis 20-Gb/s fully featured operation with –‘digital’ pre-emphasis –eye-crossing –output swing control High Sensitivity (<10 mVpp per side) Large output swing (>350 mVpp per side) 50-Ohm input/output matching 1.5 V supply 130 nm CMOS implementation

Circuit Design and Description

Biasing for peak f T and NF MIN Peak f T bias 0.3mA/um Min. NF MIN 0.15mA/um Multi-stage amplifiers with signal path transistors biased at half peak fT

Circuit Architecture Multi-stage amplifier implementation Input stage biased and sized for high gain and low noise Inductive broad-banding in every inverter stage to reduce power and increase speed Main (higher-speed) and pre- emphasis paths are parallelized

Block Diagram

Input Matching and Low-Noise Comparator

Eye-crossing Control *D. S. McPherson, S. Voinigescu et al IEEE GaAs IC Symp. - Oct. 2002

Digital Pre-emphasis Delay Circuit

Digital Differentiator

Inductor design considerations Inductor broadband “2-  ” model model extracted for design from ASITIC simulations. Multi-layer ( 2 or 3 metals) design used to minimize inductor area (400, 700, 900 pH used) Largest inductor side is 44 um (900 pH)

Experimental Results

Chip Photograph

Input/Output Return Loss

Measured Eye-diagrams: 0.3Vp-p output 20 Gb/s 25 Gb/s 30 Gb/s

Sensitivity 20 Gb/s30 Gb/s Input: 21mVpp one side only Output: 80mVpp per side

20-Gbs Eye with Pre-emphasis

Output Swing Input: 200mVpp one side only Output: 170mVppOutput: 340mVpp

Output Swing Gbps Output: 170mVppOutput: 270mVpp (Gain at 30 Gb/s!) Input: 200mVpp one side only

30%-70% Crossing Gbs 70%30% 50%

40%-60% Crossing 25 Gbs 60%40% 50%

Summary and Conclusion

Performance Summary ParameterMeasured val. Technology130nm CMOS Supply Voltage1.5 V Power Dissipation150 mW Output 20 Gb/s mVp-p 20 Gb/s30%/10% Crossing 20Gb/s30% to 70% Eye 20 Gb/s20(10) mVpp Dynamic 20 Gb/s 30 dB Noise Figure(10GHz,15GHz)16.5 dB, 17 dB S11/S22 up to 50 GHz<-12 dB

Conclusion First CMOS driver above 20 Gb/s Novel digital pre-emphasis High sensitivity, dynamic range Large output swing Eye-crossing control Communications between chips and backplanes is feasible at 20 Gb/s in 130-nm CMOS technology

Acknowledgements Rudy Beerkens and Boris Prokes of STMicroelectronics Ottawa STMicroelectronics for fabrication Micronet and Gennum Corporation for financial support Quake Technologies for access to 40 Gb/s BERT