Review of Computer System Organization. Computer Startup For a computer to start running when it is first powered up, it needs to execute an initial program.

Slides:



Advertisements
Similar presentations
Computer-System Structures Er.Harsimran Singh
Advertisements

Interactive lesson about operating system
Computer System Organization Computer-system operation – One or more CPUs, device controllers connect through common bus providing access to shared memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Chapter 2: Computer-System Structures
CMPT 300: Operating Systems I Dr. Mohamed Hefeeda
Course: Operating Systems Instructor: Umar Kalim NUST Institute of Information Technology, Pakistan Operating Systems.
OS2-1 Chapter 2 Computer System Structures. OS2-2 Outlines Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection.
1 School of Computing Science Simon Fraser University CMPT 300: Operating Systems I Dr. Mohamed Hefeeda.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Silberschatz, Galvin and Gagne ©2007 Chapter 1: Introduction.
Abhinav Kamra Computer Science, Columbia University 2.1 Operating System Concepts Silberschatz, Galvin and Gagne  2002 Chapter 2: Computer-System Structures.
Adapted from slides ©2005 Silberschatz, Galvin, and Gagne and Stallings Lecture 2: Computer Systems Overview.
Modified from Silberschatz, Galvin and Gagne ©2009 CS 446/646 Principles of Operating Systems Lecture 1 Chapter 1: Introduction.
Computer-System Structures
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures 1/31/03 Computer System Operation I/O Structure.
1.1 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts School of Computing Science Simon Fraser University CMPT 300: Operating Systems I Instructor:
A. Frank - P. Weisberg Operating Systems Functional View of Operating System.
1/21/2010CSCI 315 Operating Systems Design1 Computer System Structures Notice: The slides for this lecture have been largely based on those accompanying.
1/18/2008CSCI 315 Operating Systems Design1 Computer System Structures Notice: The slides for this lecture have been largely based on those accompanying.
Chapter 2: Computer-System Structures
General System Architecture and I/O.  I/O devices and the CPU can execute concurrently.  Each device controller is in charge of a particular device.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 1: Introduction.
Operating System Concepts Ku-Yaw Chang Assistant Professor, Department of Computer Science and Information Engineering Da-Yeh University.
Objectives To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 1: Introduction.
Operating Systems Lecture 3 Computer Systems Review
Chapter 1. Introduction What is an Operating System? Mainframe Systems
2.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts with Java Chapter 2: Computer-System Structures Computer System Operation I/O Structure.
CHAPTER 2: COMPUTER-SYSTEM STRUCTURES Computer system operation Computer system operation I/O structure I/O structure Storage structure Storage structure.
Silberschatz, Galvin, and Gagne  Applied Operating System Concepts Module 2: Computer-System Structures Computer System Operation I/O Structure.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Chapter 2: Computer-System Structures
Thanks to Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2 Computer-System Structures n Computer System Operation n I/O Structure.
1 CSE Department MAITSandeep Tayal Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection.
2: Computer-System Structures
Chapter 1: Introduction. 1.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 1: Introduction What Operating Systems Do (previous.
Chapter 2: Computer-System Structures 2.1 Computer System Operation 2.5 Hardware Protection 2.6 Network Structure.
1 Chapter 2: Computer-System Structures  Computer System Operation  I/O Structure  Storage Structure  Storage Hierarchy  Hardware Protection  General.
Chapter 1: Introduction. 1.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 1: Introduction What Operating Systems Do Computer-System.
Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection Network Structure.
2.1 Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 1: Introduction.
Chapter 1: Introduction
CE Operating Systems Lecture 2 Low level hardware support for operating systems.
1 CS.217 Operating System By Ajarn..Sutapart Sappajak,METC,MSIT Chapter 2 Computer-System Structures Slide 1 Chapter 2 Computer-System Structures.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 4 Computer Systems Review.
Silberschatz, Galvin and Gagne  Applied Operating System Concepts Chapter 2: Computer-System Structures Computer System Architecture and Operation.
CE Operating Systems Lecture 2 Low level hardware support for operating systems.
1 Lecture 1: Computer System Structures We go over the aspects of computer architecture relevant to OS design  overview  input and output (I/O) organization.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Chapter 2: Computer-System Structures(Hardware) or Architecture or Organization Computer System Operation I/O Structure Storage Structure Storage Hierarchy.
Chapter 2. Computer-System Structure Device controllers: synchronize and manage access to devices.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edit9on Lecture 3 Chapter 1: Introduction Provided & Updated by Sameer Akram.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 1: Introduction.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Chapter 2: Computer-System Structures(Hardware)
Chapter 2: Computer-System Structures
Chapter 2: Computer-System Structures
Chapter 1: Introduction
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage.
Computer-System Architecture
Module 2: Computer-System Structures
Module 2: Computer-System Structures
Chapter 1: Introduction
Chapter 2: Computer-System Structures
Chapter 2: Computer-System Structures
Module 2: Computer-System Structures
Module 2: Computer-System Structures
Presentation transcript:

Review of Computer System Organization

Computer Startup For a computer to start running when it is first powered up, it needs to execute an initial program This initial program, the bootstrap program, tends to be simple Typically it is stored in read-only memory (ROM) or electronically erasable programmable read-only memory (EEPROM), generally known as firmware The bootstrap program initializes all aspects of the system, from CPU registers to device controllers and memory contents It must know how to load the operating system and to start executing it; to accomplish this, it must locate and load the operating system kernel into memory

Computer System Organization A computer system consists of – One or more CPUs and a number of device controllers connected through a common bus providing access to shared memory – The CPU and the device controllers execute concurrently, thereby competing for memory cycles

Computer-System Operation I/O devices and the CPU can execute concurrently. Each device controller is in charge of a particular device type. Each device controller has a local buffer. The CPU moves data from/to main memory to/from local buffers I/O is from the device to local buffer of controller. A device controller informs the CPU that it has finished its operation by causing an interrupt.

Common Functions of Interrupts An interrupt transfers control to the interrupt service routine – This is done generally through a specific interrupt vector, which contains the address of the service routine. The interrupt architecture must save the address of the interrupted instruction. Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt. A trap is a software-generated interrupt caused either by an error or a user request. An operating system is interrupt driven.

Interrupt Handling The operating system preserves the state of the CPU by storing registers and the program counter. It then determines which type of interrupt has occurred: – polling – vectored interrupt system Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Timeline

I/O Structure Synchronous Method: After I/O starts, control returns to the user program only upon I/O completion – Wait instruction idles the CPU until the next interrupt – Wait loop (contention for memory access). – At most one I/O request is outstanding at a time, no simultaneous I/O processing. Asynchronous Method: After I/O starts, control returns to the user program without waiting for I/O completion – System call – request to the operating system to allow a user to wait for I/O completion. – Device-status table contains entry for each I/O device indicating its type, address, and state. – The operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.

Two I/O Methods Synchronous Asynchronous

Device-Status Table

Direct Memory Access Structure DMA is used for high-speed I/O devices able to transmit information at close to memory speeds. Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention. Only one interrupt is generated per block, rather than the one interrupt per byte.

Storage Structure Main memory – only large storage media that the CPU can access directly. Secondary storage – extension of main memory that provides large nonvolatile storage capacity. Magnetic disks – rigid metal or glass platters covered with magnetic recording material – Disk surface is logically divided into tracks, which are subdivided into sectors. – The disk controller determines the logical interaction between the device and the computer.

Storage Hierarchy Storage systems organized in hierarchy. – Speed – Cost – Volatility Caching – copying information into faster storage system; main memory can be viewed as a last cache for secondary storage.

Storage-Device Hierarchy

Caching Important principle, performed at many levels in a computer (in hardware, operating system, software) Information in use copied from slower to faster storage temporarily Faster storage (cache) checked first to determine if information is there – If it is, information used directly from the cache (fast) – If not, data copied to cache and used there Cache smaller than storage being cached – Cache management important design problem – Cache size and replacement policy

Performance of Various Levels of Storage Movement between levels of storage hierarchy can be explicit or implicit

Migration of Integer A from Disk to Register Multitasking environments must be careful to use the most recent value, no matter where it is stored in the storage hierarchy Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recent value in their cache Distributed environment situation even more complex – Several copies of a datum can exist – Various solutions covered in Chapter 17