EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
Spring 2007EE130 Lecture 29, Slide 1 Lecture #29 ANNOUNCEMENTS Reminder: Quiz #4 on Wednesday 4/4 No Office Hour or Coffee Hour on Wednesday Tsu-Jae will.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
Semiconductor Devices 27
ECE 431 Digital Circuit Design Chapter 3 MOS Transistor (MOSFET) (slides 2: key Notes) Lecture given by Qiliang Li 1.
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Professor Ronald L. Carter
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 8 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
EE130/230A Discussion 10 Peng Zheng.
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 4 – Spring 2011 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Semiconductor Device Modeling & Characterization Lecture 19
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter

©rlc L24-19Apr20112 Ideal 2-terminal MOS capacitor/diode x -x ox 0 SiO 2 silicon substrate V gate V sub conducting gate, area = LW t sub 0 y L

©rlc L24-19Apr20113 Band models (approx. scale) EoEo EcEc EvEv q  ox ~ 0.95 eV metalsilicon dioxidep-type s/c q  m = 4.1 eV for Al EoEo E Fm E Fp EoEo EcEc EvEv E Fi q  s,p q  Si = 4.05eV E g,ox ~ 8 eV

©rlc L24-19Apr20114 Flat band condition (approx. scale) E c,Ox EvEv AlSiO 2 p-Si q(  m -  ox )= 3.15 eV E Fm E Fp EcEc EvEv E Fi q(  ox -  Si )=3.1eV E g,ox ~8eV q  fp = 3.95eV

©rlc L24-19Apr20115 Depletion for p-Si, V gate > V FB SiO 2 p-type Si V gate > V FB V sub = 0 E Ox,x > 0 x -x ox 0 t su b Acceptors Depl Reg

©rlc L24-19Apr20116 Depletion for p-Si, V gate > V FB Fig 10.4b*

©rlc L24-19Apr20117 Equivalent circuit for depletion Depl depth given by the usual formula = x depl = [2  Si (V bb )/(qN a )] 1/2 Depl cap, C’ depl =  Si /x depl Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ depl

©rlc L24-19Apr20118 Inversion for p-Si V gate >V Th >V FB V gate > V FB V sub = 0 E Ox,x > 0 Acceptors Depl Reg e - e - e - e - e -

©rlc L24-19Apr20119 Inversion for p-Si V gate >V Th >V FB Fig 10.5*

©rlc L24-19Apr Approximation concept “Onset of Strong Inv” OSI = Onset of Strong Inversion occurs when n s = N a = p po and V G = V Th Assume n s = 0 for V G < V Th Assume x depl = x d,max for V G = V Th and it doesn’t increase for V G > V Th C d,min =  Si /x d,max for V G > V Th Assume n s > 0 for V G > V Th

©rlc L24-19Apr MOS Bands at OSI p-substr = n-channel Fig 10.9*

©rlc L24-19Apr Equivalent circuit above OSI Depl depth given by the maximum depl = x d,max = [2  Si |2  p |/(qN a )] 1/2 Depl cap, C’ d,min =  Si /x d,max Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ d,min

©rlc L24-19Apr MOS surface states** p- substr = n-channel

©rlc L24-19Apr n-substr accumulation (p-channel) Fig 10.7a*

©rlc L24-19Apr n-substrate depletion (p-channel) Fig 10.7b*

©rlc L24-19Apr n-substrate inversion (p-channel) Fig 10.7*

©rlc L24-19Apr Values for gate work function,  m

©rlc L24-19Apr Values for  ms with metal gate

©rlc L24-19Apr Values for  ms with silicon gate

©rlc L24-19Apr Fig 10.15*  ms (V) N B (cm -3 ) Typical  ms values

©rlc L24-19Apr Flat band with oxide charge (approx. scale) EvEv AlSiO 2 p-Si E Fm E c,Ox E g,ox ~8eV E Fp EcEc EvEv E Fi q(  fp -  ox ) q(V ox ) q(  m -  ox ) q(V FB ) V FB = V G -V B, when Si bands are flat ExEx + -

©rlc L24-19Apr References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986