V. A. Soukhanovskii Lawrence Livermore National Laboratory, Livermore, California, USA for the NSTX-U and DIII-D Research Teams Snowflake Divertor Studies.

Slides:



Advertisements
Similar presentations
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Advertisements

ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Toroidally resolved measurements of ELMs in RMP and non-RMP H-mode discharges on DIII-D M.W. Jakubowski 1, T.E. Evans 3, C.J. Lasnier 4, O. Schmitz 2,
Synergy Between Lithium Plasma-Facing Component Coatings and the Snowflake Divertor Configuration in NSTX * V. A. Soukhanovskii (LLNL) M. G. Bell, R. E.
1 J-W. Ahn a H.S. Han b, H.S. Kim c, J.S. Ko b, J.H. Lee d, J.G. Bak b, C.S. Chang e, D.L. Hillis a, Y.M. Jeon b, J.G. Kwak b, J.H. Lee b, Y. S. Na c,
Introduction to Spherical Tokamak
V. A. SOUKHANOVSKII, POSTER EX/P4-22, 22 ND IAEA FEC, OCTOBER 2008, GENEVA, SWITZERLAND 1 of 22 Divertor Heat Flux Mitigation in High- Performance.
Progress on Determining Heat Loads on Divertors and First Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting December 12-13, 2007 Atlanta, Georgia.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
H. D. Pacher 1, A. S. Kukushkin 2, G. W. Pacher 3, V. Kotov 4, G. Janeschitz 5, D. Reiter 4, D. Coster 6 1 INRS-EMT, Varennes, Canada; 2 ITER Organization,
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Advanced divertor magnetic configurations for tokamaks: concepts, status, future. Vlad Soukhanovskii Edge Coordinating Committee Fall 2014 Technical Meeting.
Simulation Study on behaviors of a detachment front in a divertor plasma: roles of the cross-field transport Makoto Nakamura Prof. Y. Ogawa, S. Togo, M.
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
V. A. Soukhanovskii 1, R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B. P. LeBlanc 3, S.
ASIPP Overview of EAST H-mode Plasma Liang Wang*, J. Li, B.N. Wan, H.Y. Guo, Y. Liang, G.S. Xu, L.Q. Hu for EAST Team & Collaborators Institute of Plasma.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Divertor heat flux mitigation with impurity-seeded standard and snowflake divertors in NSTX. V. A. Soukhanovskii, R. E. Bell, A. Diallo, S. Gerhardt, R.
Initial Exploration of HHFW Current Drive on NSTX J. Hosea, M. Bell, S. Bernabei, S. Kaye, B. LeBlanc, J. Menard, M. Ono C.K. Phillips, A. Rosenberg, J.R.
Taming the Plasma-Material Interface with the Snowflake Divertor in NSTX V. A. Soukhanovskii Lawrence Livermore National Laboratory JI nd Annual.
1 Development of integrated SOL/Divertor code and simulation study in JT-60U/JT-60SA tokamaks H. Kawashima, K. Shimizu, T. Takizuka Japan Atomic Energy.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
The snowflake divertor: a game-changer for magnetic fusion devices ? V. A. Soukhanovskii Lawrence Livermore National Laboratory Workshop on Innovation.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
Demonstration of 200 kA CHI Startup Current Coupling to Transformer Drive on NSTX B.A. Nelson, R. Raman, T.R. Jarboe, University of Washington D. Mueller,
Divertor Design Considerations for CFETR
High  p experiments in JET and access to Type II/grassy ELMs G Saibene and JET TF S1 and TF S2 contributors Special thanks to to Drs Y Kamada and N Oyama.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
ITPA DSOL meeting, Toronto W. Fundamenski9/11/2006 TF-E Introduction to ELM power exhaust: Overview of experimental observations W.Fundamenski Euratom/UKAEA.
NSTX-U cryo/particle control discussion #8 December 19, 2012 What have we done, or plan to do to be responsive to PAC questions, and in prep for 5 year.
1 Boundary Physics Five Year Plan R. Maingi, H. Kugel* and the NSTX Team Oak Ridge National Laboratory * Princeton Plasma Physics Laboratory Five Year.
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
Edge characterization experiments in the National Spherical Torus Experiment V. A. Soukhanovskii and NSTX Research Team Session CO1 - NSTX ORAL session,
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
O-36, p 1(10) G. Arnoux 18 th PSI, Toledo, 26-30/05/2008 Divertor heat load in ITER-like advanced tokamak scenarios on JET G.Arnoux 1,(3), P.Andrew 1,
NSTX-U 5 Year Plan for Pedestal, Scrape-off Layer and Divertor Physics V. A. Soukhanovskii (LLNL) A.Diallo, R. Maingi, C. S. Chang (PPPL) for the NSTX-U.
DIVERTOR INVESTIGATIONS ON NSTX-U LEADING TO FNSF Mike Kotschenreuther Brent Covele Swadesh Mahajan Prashant Valanju Jonathan Roeltgen Zhong-Ping Chen.
Divertor options for NSTX and NSTX-Upgrade Rajesh Maingi, On behalf of the NSTX Research Team NSTX Program Advisory Committee Meeting Princeton, NJ Feb.
Vlad Soukhanovskii, LLNL Ahmed Diallo, PPPL Daren Stotler, PPPL for the NSTX Research Team NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima.
Rajesh Maingi Oak Ridge National Laboratory M. Bell b, T. Biewer b, C.S. Chang g, R. Maqueda c, R. Bell b, C. Bush a, D. Gates b, S. Kaye b, H. Kugel b,
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
V. A. Soukhanovskii Lawrence Livermore National Laboratory, Livermore, California, USA H. Reimerdes Ecole Polytechnique Fédérale de Lausanne, Centre de.
1 Feature of Energy Transport in NSTX plasma Siye Ding under instruction of Stanley Kaye 05/04/09.
1 EAST Recent Progress on Long Pulse Divertor Operation in EAST H.Y. Guo, J. Li, G.-N. Luo Z.W. Wu, X. Gao, S. Zhu and the EAST Team 19 th PSI Conference.
Comments on Fusion Development Strategy for the US S. Prager Princeton Plasma Physics Laboratory FPA Symposium.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
1Field-Aligned SOL Losses of HHFW Power and RF Rectification in the Divertor of NSTX, R. Perkins, 11/05/2015 R. J. Perkins 1, J. C. Hosea 1, M. A. Jaworski.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
V. A. Soukhanovskii Lawrence Livermore National Laboratory H. W. Kugel, R. Kaita, A. L. Roquemore Princeton Plasma Physics Laboratory NSTX Research Team.
LI et al. 1 G.Q. Li 1, X.Z. Gong 1, A.M. Garofalo 2, L.L. Lao 2, O. Meneghini 2, P.B. Snyder 2, Q.L. Ren 1, S.Y. Ding 1, W.F. Guo 1, J.P. Qian 1, B.N.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
V. A. Soukhanovskii, NSTX FY2010 Results Review, Princeton, NJ 1 of 31 Boundary Physics Topical Science Group summary V. A. Soukhanovskii, TSG Leader Lawrence.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
Status of NSTX/DIII-D/MAST aspect ratio core confinement comparison studies M. Peng, for E.J. Synakowski For the ITPA Transport Physics Working Group Kyota,
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
1 Boundary Physics Five Year Plan R. Maingi, H. Kugel* and the NSTX Team Oak Ridge National Laboratory * Princeton Plasma Physics Laboratory Five Year.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
Snowflake Divertor as Plasma-Material Interface for Future High Power Density Fusion Devices V. A. Soukhanovskii, R. E. Bell, S. P. Gerhardt, S. Kaye,
1 Edge Characterization Experiment in High Performance (highly shaped) Plasmas R. J. Maqueda (Nova Photonics) R. Maingi (ORNL) V. Soukhanovskii (LLNL)
L.R. Baylor 1, N. Commaux 1, T.C. Jernigan 1, S.J. Meitner 1, N. H. Brooks 2, S. K. Combs 1, T.E. Evans 2, M. E. Fenstermacher 3, R. C. Isler 1, C. J.
Features of Divertor Plasmas in W7-AS
T. Morisaki1,3 and the LHD Experiment Group
T. Morisaki1,3 and the LHD Experiment Group
Presentation transcript:

V. A. Soukhanovskii Lawrence Livermore National Laboratory, Livermore, California, USA for the NSTX-U and DIII-D Research Teams Snowflake Divertor Studies in DIII-D and NSTX Aimed at the Power Exhaust Solution for the Tokamak Oral O2.101

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Co-authors and Acknowledgements S. L. Allen 1, E. Kolemen 2, T. H. Osborne 3, J. A. Boedo 4, M. E. Fenstermacher 1, R.J. Groebner 3, D.N. Hill 1, A.W. Hyatt 3, C. J. Lasnier 1, A. W. Leonard 3, M. A. Makowski 1, W.H. Meyer 1, A.G. McLean 1, T.W. Petrie 3, D. D. Ryutov 1, J.G. Watkins 5, R.E. Bell 2, A. Diallo 2, S. Gerhardt 2, R. Kaita 2, S. Kaye 2, B.P. LeBlanc 2, R. Maingi 2, E. T. Meier 1, J.E. Menard 2, M. Podesta 2, R. Raman 6, A.L. Roquemore 2, and F. Scotti 2 1 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 2 Princeton Plasma Physics Laboratory, Princeton, NJ , USA 3 General Atomics, San Diego, CA , USA 4 University of California San Diego, La Jolla, CA , USA 5 Sandia National Laboratories, Livermore, CA 94550, USA 6 University of Washington, Seattle, WA 98105, USA Work supported in part by the US DoE under DE-AC52-07NA27344, DE-AC52- 07ER27344, DE-FC02-04ER54698, DE-AC02-09CH11466, and DE-FG02-07ER54917.

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Significant heat flux reduction between and during ELMs observed in NSTX and DIII-D snowflake divertors Outline of talk  Snowflake divertor configuration  Snowflake divertor in NSTX Facilitated access to detachment Heat flux reduction compatible with H-mode  Snowflake divertor in DIII-D Heat flux reduction compatible with H-mode Cryopump density control within n e /n G = Detachment and ELM heat flux  Projections for NSTX-Upgrade  Conclusions *

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Snowflake divertor geometry takes advantage of B p structure in second-order null region Snowflake-minus Snowflake-plus Exact snowflake * D. D. Ryutov, PoP 14, ; EPS 2012 Invited, PPCF 54, (2012)  Predicted properties Increased edge shear: ped. stability Add’l null: H-mode power threshold, ion loss Larger plasma wetted-area A wet : reduce q div Four strike points : share q II Larger X-point connection length L x : reduce q II Larger effective divertor volume V div : incr. P rad High  p convective zone D* ≤ a (a  pm / R) 1/4  Snowflake divertor configuration Second-order null  B p ~ 0 and grad B p ~ 0 (Cf. first-order null: B p ~ 0) Exact snowflake topologically unstable Deviation from exact snowflake  d ≤ a ( q / a) 1/3 where d – distance between nulls, a – plasma minor radius, q – SOL width

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Snowflake configurations sustained in NSTX and DIII-D for many  E ’s with divertor coil currents within safety margins  Divertor coil currents kA within safety margins  Steady-state snowflake configurations NSTX: 0.5 s DIII-D: 3 s Standard divertor Snowflake-minus Exact snowflake Standard divertor Snowflake-minus

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Snowflake divertor in NSTX compatible with H-mode confinement, facilitated access to partial detachment  Graphite PFCs with lithium coatings  I p = 0.9 MA, P NBI = 4 MW, P SOL ~ 3 MW  q peak ≤ 8 MW/m 2, q || ≤ 100 MW/m 2 With snowflake divertor  H-mode confinement unchanged W MHD ~250 kJ, H98(y,2)~ 1,  N ~5  Core impurity reduced by up to 50 %  Suppressed ELMs re-appeared  Divertor heat flux significantly reduced Between ELMs During Type-I ELMs (  W/W ~ 5-15 %)

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 In DIII-D, peak divertor heat flux reduction by % between ELMs due to geometry  Graphite PFCs  I p = 1.2 MA, P NBI = 5 MW, P SOL ~ 3 MW  q peak ≤ 2 MW/m 2, q || ≤ 100 MW/m 2  Obtained snowflake-minus for up to 3 s duration over n e /n G = 0.4 – 0.75 using cryo-pump for density control  In lower-density snowflake H-mode Confinement unaffected Divertor attached  Divertor P rad similar to standard div. Divertor heat flux reduced  Plasma-wetted area increased up to 80 %  Connection length increased up to 75 % Standard, Snowflake

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Heat flux in snowflake divertor is further reduced during partial detachment in DIII-D  In higher-density snowflake H-mode Density n e /n G = Partial detachment onset (n e ) similar in standard and snowflake (preliminary) Peak heat flux is up to 50 % lower in partially detached snowflake vs partially detached standard divertor Lower divertor rad. power broadly distributed in partially detached snowflake No MARFEs Standard, Snowflake Standard Snowflake

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 In DIII-D, Type-I ELM heat loads reduced in D 2 -seeded (partially detached) snowflake divertor  At lower density, heat flux channels close to primary and second separatrices during ELMs Additional strike points  At high density (partial detachment), ELM heat flux significantly reduced % lower than in standard partially detached Snowflake Standard Snowflake n e /n G = 0.45 n e /n G = 0.60

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Snowflake divertor is a leading heat flux mitigation candidate for NSTX-Upgrade  Predictions for 12 MW NBI 2D multifluid code UEDGE P SOL =9 MW, 4 % carbon D,  to match q Outer divertor attached –T e, T i ≤ 80 eV New center-stack2 nd neutral beam BTIpBTIp P NBI pulse 1 T 2 MA 12 MW 5 s  NSTX-U Mission elements: Advance ST as candidate for Fusion Nuclear Science Facility Develop solutions for the plasma-material interface challenge Explore unique ST parameter regimes to advance predictive capability for ITER Develop ST as fusion energy system

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Developing the Power Exhaust Solution for the Tokamak with the Snowflake Divertor in NSTX and DIII-D  Large zone of low poloidal field in divertor resulting in significant geometry benefits for heat exhaust  Steady-state configurations with existing divertor coils  Significant peak divertor heat flux reduction between and during Type I ELMs compatible with high H-mode confinement  Initial confirmation of compatibility with cryo-pump density control  Potential to combine with radiative divertor solution  Favorable projections for NSTX-Upgrade with 12 MW NBI power

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Backup slides

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Bibliography Theory D. D. Ryutov, PoP 14 (2007), D. D. Ryutov et al., Plasma Phys. Control. Fusion 52 (2010) D. D. Ryutov, Contrib. Plasma Phys. 52 (2012) 539. D. D. Ryutov et al., Plasma Phys. Control. Fusion 54 (2012) D. D. Ryutov et al., Paper TH/P4-18, IAEA FEC 2012 DIII-D S. L. Allen et al., Paper PD/1-2, IAEA FEC NSTX V. A. Soukhanovskii et al., Nucl. Fusion 51 (2011) V. A. Soukhanovskii et al., Phys. Plasmas 19 (2012) V. A. Soukhanovskii et al., Paper EX/P5-21, IAEA FEC 2012.

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Various techniques developed for reduction of heat fluxes q || (divertor SOL) and q peak (divertor target)  Recent ideas to improve standard divertor geometry Snowflake divertor (D. D. Ryutov, PoP 14, ) X-divertor (M. Kotschenreuther et. al, IC/P6-43, IAEA FEC 2004) Super-X divertor (M. Kotschenreuther et. al, IC/P4-7, IAEA FEC 2008)

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Heat flux mitigation is more challenging in compact divertor of spherical torus  NSTX I p = MA, t pulse < 1.5 s, P in ≤ 7.4 MW (NBI) ATJ and CFC graphite PFCs P / R ~ 10 q pk ≤ 15 MW/m 2 q || ≤ 200 MW/m 2 QuantityNSTXDIII-D Aspect ratio In-out plasma boundary area ratio1:32:3 X-point to target parallel length L x (m) Poloidal magnetic flux expansion f exp at outer SP Magnetic field angle at outer SP (deg.)

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Snowflake divertor configurations obtained with existing divertor coils in NSTX

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Snowflake divertor configurations obtained with existing divertor coils, maintained for up to 10  E

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 NSTX: Plasma-wetted area and connection length are increased by % in snowflake divertor  These properties observed in first % of SOL width ( q ~6 mm)  B tot angles in the strike point region: 1-2 o, sometimes < 1 o Concern for hot-spot formation and sputtering from divertor tile edges Can be alleviated by q || reduction due to radiative detachment and power partitioning between strike points

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Snowflake divertor configurations obtained with existing divertor coils in DIII-D

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Snowflake configurations obtained from the standard divertor using an algorithm developed at NSTX  Grad-Shafranov equilibria modeling of possible configurations  Inner and outer strike point positions controlled by PCS using F4B and F8B coils  Secondary null-point formed and pushed in using F5B + + +

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Impulsive heat loads due to Type I ELMs are mitigated in snowflake divertor  H-mode discharge, W MHD ~ kJ Type I ELM (W/  W ~ 5-8 %) Steady-state At ELM peak

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Good H-mode confinement properties and core impurity reduction obtained with snowflake divertor  0.9 MA, 4 MW H-mode   =2.1,  =0.8  Core T e ~ keV, T i ~ 1 keV   N ~ 4-5  Plasma stored energy ~ 250 kJ  H98(y,2) ~ 1 (from TRANSP)  ELMs  Suppressed in standard divertor H-mode via lithium conditioning  Re-appeared in snowflake H- mode  Core carbon reduction due to Type I ELMs Edge source reduction Divertor sputtering rates reduced due to partial detachment

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Core carbon density significantly reduced with snowflake divertor Standard divertorSnowflake

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Good H-mode confinement properties retained or slightly reduced with CD 4 -seeded snowflake divertor Standard Snowflake Radiative divertor w/ CD 4 Snowflake+CD 4

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Divertor profiles show enhanced radiation and recombination zone in snowflake divertor w/ and w/o CD 4 Standard Snowflake Radiative divertor w/ CD 4 Snowflake+CD 4

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 NSTX: Access to radiative detachment with intrinsic carbon in snowflake divertor facilitated  Snowflake divertor ( * ): P SOL ~3-4 MW, f exp ~40-60, q peak ~ MW/m 2  Low detachment threshold  Detachment characteristics comparable to PDD with D 2 or CD 4 puffing

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Pedestal profiles very similar with and without SF(-) Slightly steeper and higher n e, lower and flatter T e with SF- Electron Density n e Electron Temperature T e S. L. Allen et al., Paper PD/1-2, IAEA FEC 2012.

V. A. SOUKHANOVSKII, 40 th EPS, Espoo, Finland, 2 July of 24 Detailed ELM analysis before/during SF shows: Pedestal Energy (W PEDESTAL ) Constant Confinement Constant Change in stored energy lost per ELM (ΔW ELM ) is reduced Consistent with Loarte connection length scaling Detailed ELM Analysis:  W(ELM) decreased, W pedestal constant in SF S. L. Allen et al., Paper PD/1-2, IAEA FEC 2012.