QCD Matter within Quasiparticle Model & CEP B. Kämpfer Research Center Rossendorf/Dresden Technical University Dresden with M. Bluhm, R. Schulze, D. Seipt, supported by BMBF, GSI, EU -- Lattice QCD & Quasiparticle Model -- Toy Models for CEP -- EoS and v2 for RHIC (3D Ising) (open charm does not flow)
Lattice QCD Results 1. Phase Boundary 2. EoS = 0
Quasiparticle Model lattice effective1-loop selfenergies stat. + thermo.consist.
Bielefeld-Swansea data c0 c2 c4 c6 phase transition
c2 QPM susceptibility peak: crit. behavior
Isentropic Expansion RHIC-130 SPS-158 chemical freeze-out: T, muB s/n
Including the CEP 1. ) (T,(r,h) 2. h r T kink in div. of
3. Singular Part of EoS: Parametric Form 3D Ising Model Guida+Zinn-Justin r h
Toy Model I: smooth reg. EoS critical curve 3. CEP: additional information Allton et al MeV
CEP: Attractor - Repulsor no focusing effect Wambach et al. unphysical CEP
Barz, Kämpfer, Csernai, Lukacs PLB 1984 A Funnel Effect due to Phase Transition? 1D Hydro & relaxation time approx. focusing effect squeezing of chem. freeze-out points
Toy Model II: 2-Phase Ansatz Nonaka, Asakawa (2004) critical curve: given
Toy Model III: QPM & CEP
Need of Modifying lQCD by CEP? Conjecture: hydro evolution of v2, pT at RHIC does not feel CEP using P. Kolbs code + init.parameters Kolb-Rapp off-equilibrium hadron EoS with U. Heinz/Ohio
High Density EoS : bag model x Progress of lQCD: High-density part fixed Progress of lQCD: Low-density part fixed tiny baryon density effects (=resonance gas: Redlich) QPM(1.0) QPM(2.0)
Strange Baryons data disfavor phase transition Huovinen 2005: opposite conclusion
non-hydro behavior of open charm? D MesonsMeson or K?
Summary & Outlook -- Lattice QCD vs. Quasiparticle Model: perfect description of either p(T,0) or p(T,mu) consistency of chem.freeze-out and isentropes -- Toy models for including CEP: many free parameters, size of critical region = ? lattice QCD + CEP = ? -- v2 hydro: RHIC: EoS at Tc does not matter much D does not participate in hydro flow -- CERN-SPS – CBM-FAIR: very different
Relativistic Hydro Init. Conds.: b dependent profiles from wounded nucleon & binary collisions s < 110 fm-3, nB < 0.4 fm-3: RHIC200 Freeze-out: Cooper-Frye, T = 100 MeV Kolb-Rapp off-equilibrium EoS: p(e,nB), T(e,nB), muB(e,nB) P. Kolb et al. with U. Heinz/Ohio
Interpolation is Better than Extrapolation lQCD lQCD/res.gas/KR * V2: weak dependence on EoS
S. Wheaton: s(T,muB) res. gas
c0 c2 c4 c6/c4 nF=2+1 nF=2 Bielefeld-Swansea data
w/o CEP
The 10% Problem c0 c2 c0
(r,h) (R, ) h=const r=const R=const 0=const
Weak Dependence of v2 on EoS
Scaling