Science investigations in the framework of expedition to Europa

Slides:



Advertisements
Similar presentations
THESIS – the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft a concept for a joint NASA/ESA exoplanet characterization mission.
Advertisements

EPSC Europlanet – Potsdam, Germany. Sep MSSL/UCL UK In-situ Science on the surfaces of Ganymede and Europa with Penetrators Rob Gowen (MSSL/UCL,
Science Motivation Comparative planetology of the outer planets is key to understanding the origin & evolution of the solar system S. Atreya (2006) –Deep,
Golubev Yu.F., Grushevskii A.V., Koryanov V.V., Tuchin A.G. A Method of Orbits Designing Using Gravity Assist Maneuvers to the Landing.
Институт прикладной математики им. М.В.Келдыша РАН Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.
1 Architecture and Planning Strategies for Addressing Radiation, Space Weather, and Space Climatology Impact on NASA Missions Study Sponsor - NASA Office.
E.T. ( E UROPA T RAVELERS ). GREEN TEAM Mission Principle Investigator : Min Ki Kim Co – Investigator : Young Been Choi : Jae Wook Choi : Yong Hyeon Jang.
A Polar Volatiles Laboratory A. Smith, R. A. Gowen, I. A. Crawford Shackleton Crater ESA Smart-1.
1 16 June 2011, Lisbon (P) MEPAG J. L. Vago, Michael Meyer, and iJSWG Team 2018 Joint Rover Objectives NOTE ADDED BY JPL WEBMASTER: This content has not.
8’th ILEWG Conference, Beijing, July 23-27, 2006 MSSL/UCL UK. Lunar Exploration with Penetrators A.Smith, R.Gowen, A.Coates – MSSL/UCL I.Crawford – Birkbeck/UCL.
Mission: Launch 2014/15; Deployment June-August 2019, release alt. 100m Mission duration: 16 hrs of on-asteroid operation Main functions: On-surface up-righting.
Jupiter-Europa Cosmic Vision Meeting, London, Nov 23-24, 2006 MSSL/UCL UK Towards a Viable Europa Penetrator A. Smith, R. Gowen, A. Coates, etc – MSSL/UCL.
Temperature ( C) Pressure ( bars) Jupiter Probes Venus Surface Exploration CNSR Europa Surface and Subsurface Titan.
EUROPA Joseph T. Wunderlich, Ph.D.. Talk Agenda 1977: NASA Voyager : NASA Voyager : NASA Galileo 2020 ESA/NASA Europa Jupiter System Mission”(EJSM)
Science Payload and Advanced Concept Office (SCI-A) L. Duvet SDW2005, Taormina, Sicily 22/06/05 Active Pixel Sensor developments for future ESA space science.
1 ExoMars Programmatic situation December 2014 Rolf de Groot Head of Robotic Exploration Coordination Office ESWT#7 meeting, 9-10 December 2014, Altec,
Modern Exploration Mars Pathfinder  “NASA’s Mars Pathfinder mission – the first spacecraft to land on Mars in more than 20 years and the first ever to.
“ PHOBOS - SOIL ” Phobos Sample Return Mission 1. goals, methods of study A.Zakharov, Russian academy of sciences Russian aviation.
Introduction Low mass, high speed impacting projectiles, performing science investigations from below surface. Objectives: ground truth, unique science.
→ Potential ESA- Roscosmos Cooperation in Education Activities.
Österreichische Akademie der Wissenschaften (ÖAW) / Institut für Weltraumforschung (IWF), Graz, Austria, T +43/316/ , iwf.oeaw.ac.atDownload:2013.
A. Milillo, and the GENIE Team. Golden Age of of Solar System Exploration Ganymede’s and Europa’s Neutral Imaging Experiment (GENIE) GENIE is a high-angular-resolution.
CROSS-SCALE and SCOPE: The future in Space Plasma Physics Matt Taylor on behalf of Steve Schwartz, Masaki Fujimoto and the Cross-Scale and SCOPE Teams.
Brief introduction of YINGHUO-1 Micro-satellite for Mars environment exploration J. Wu, G. Zhu, H. Zhao, C. Wang, L. Lei, Y. Sun, W. Guo and S. Huang Center.
Cubesats A spacecraft concept to provide advances in international cooperation From: Doug Rowland, NASA GSFC Alexi Glover, ESA.
The G.I.E.C. Space Probe Ganymede, Io, Europa, and Callisto By Jason Hunyar /ast/101/klinger/astronom y/solar%20system/ganyme.
© Lavochkin Association, 2013 Ganymede Lander mission overview.
Preliminary model payloads for the Ganymede Lander and the Relay orbiter 7 March, 2013 Laplace-Ganymede lander mission Oleg Korablev,
5 th IPPW, Bordeaux, June 25-99, 2007 Kinetic Micro-Penetrators For Exploration Of Solar System Bodies. R. Gowen & A. Smith, MSSL/UCL.
Radiation environment estimates for Europa lander mission M. V. Podzolko 1, I. V. Getselev 1, Yu. I. Gubar 1, I. S. Veselovsky 1,2, A. A. Sukhanov 2 1.
LANDERS FOR GALILEAN SATELLITES ZIGZAG HISTORY OF THE ENDEAVOUR
Back to TITAN 24/06/2008 All rights reserved, 2007, Thales Alenia Space Template reference : K-EN TITAN probes following CASSINI - HUYGENS Denis.
VdG:ISME - July Vasco da Gama In Situ Mars Explorer.
NETwork studies of MARS climate and interior A.V.Rodin, V.M.Linkin, A.N.Lipatov, V.N.Zharkov, T.V.Gudkova, R.O.Kuzmin.
Mullard Space Science Laboratory Planetary Micro-Penetrators Dr Rob Gowen on behalf of Glyn Collinson international - Germany, France, Austria,
Titan Saturn System Mission Workshop - Paris, Mar 17-19, 2008 MSSL/UCL UK Penetrators for Enceladus Titan Saturn System Mission Workshop - Paris, Mar 17-19,
LIFE: Traceability Matrix Team Members JPL: P. Tsou, I. Kanik NASA Ames: C. McKay UoW: D. Brownlee Mission Cost Since formal costing is yet to be performed,
Mars Geochemistry and Future Experiment Needs Mark A. Bullock August 7, 2002.
Solar Orbiter Mission (ESA) - The near-Sun phase  approach the Sun as close as 48 solar radii (~0.22 AU). At these distances, the angular speed of a spacecraft.
Royal Astronomical Society, January 11, 2008 MoonLite a UK led penetrator mission to the Moon Professor Alan Smith On behalf of the UK Penetrator Consortium.
Julian Chela-Flores The Abdus Salam ICTP, Trieste, Italia and Instituto de Estudios Avanzados, Caracas, Republica Bolivariana de Venezuela Can a future.
Laplace Meeting - Frascati, April 2008 MSSL/UCL UK Penetrators for Europa MSSL/UCL UK Professor Andrew Coates on behalf of UK Penetrator Consortium.
SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS, LOMONOSOV MOSCOW STATE UNIVERSITY, RUSSIA Radiation Conditions of a Mission to Jupiter ʼ s Moon Ganymede M. V.
Dr. Richard R. Vondrak Director, Robotic Lunar Exploration Program Science Mission Directorate NASA Headquarters September 2004 NASA Robotic Lunar Exploration.
Human Exploration of Mars Design Reference Architecture 5
EGU Conference,Vienna, April15, 2008 An Update to MoonLITE Lunar Mission Rob Gowen, MSSL/UCL On behalf of the UK Penetrator Consortium + international.
Turin. ALTEC. DESCENT MODULE AND SURFACE PLATFORM ExoMars Science Working Team
2 Jun 2022 Jan 2030 Sep 2032 Jun months 1 month 9 months 11 months 9 months Launch Ariane-5 Jupiter orbit insertion Transfer to Callisto Europa.
Interlude  Viking mission operations ended in the early 1980s  Viking missions gave scientists the most complete picture of Mars to date. What does this.
Team JUPITER Midterm presentation JUPITER – Jovian Unit Processing Intelligent Terrain and Environment Reconnaissance Skyler LaBuff, Jon Mefford, Jaime.
Miniature Probes for Planetary Atmospheric Exploration: Where Less is More Anthony Colaprete ASA ARC.
Europa Mission Lisa Gaddis (USGS, Astrogeology)
Upcoming Missions to Europa (All Photos Credit NASA and ESA)
ESA UNCLASSIFIED – For Official Use FISO COLLOQUIUM, 18 June 2014 B. HUFENBACH ESA’S SPACE EXPLORATION STRATEGY.
Scarab Autonomous Traverse Carnegie Mellon December 2007 David Wettergreen.
ISRO –Programmatic Update S.Seetha Programme Director, Space Sciene Programme Office, ISRO HQ & Co-Chair-INMWG INMWG Meeting on 23 Rd Feb 2016.
Roscosmos and RAS expressed their wish to integrate issues of NEO and space debris in the Federal Program. Project proposed for Russian Federal Space.
Payload for Orbiter/Carrier. Caution No precise estimate on the available mass for the orbiter/carrier payload If we take 250 kg at JOI as a reference,
Jean-Yves Prado CNES/DSP
JUpiter Icy Moons Explorer (JUICE)
F. Tosi, A. Longobardo, O. Prieto-Ballesteros, G. Choblet
DEMOTE Mission to Europa
The Europa Initiative for ESA’s M5 mission JEM SCIENCE PLAN
The Akon Europa Penetrator
N. André, with inputs from J. Cooper
Bethany, Jay, and Michael
Europa Kaitlyn Young.
Radiation Requirements for the AO Response
Pier Giorgio Marchetti, Philippe Mougnaud European Space Agency
Title (do not change font or font size for any of the chart elements)
Presentation transcript:

Science investigations in the framework of expedition to Europa L. Zelenyi et al

News Split of EJSM into JUICE (ESA) and some independent study by NASA (see JPL talks later) JUICE: launch 2022 (2023) Callisto phase 2 Europa fly-bys Ganymede phase Crush into Ganymede Continued assessment of Europa Lander mission 2009-2012

JUICE model payload

Laplace-Europa Lander mission: Development 2008: Preliminary assessment 2008: Initial industrial study 2008 2009: Europa Lander workshop 2009 2010: radiation load/scenario/landing site assessment; lander payload definition 2011: further scenario development; orbiter payload definition; payload accommodation Present mission architecture: Europa lander, full mass 1210 kg, target 50 kg of mass for science Telecom and science orbiter, 50 kg science payload Multiple fly-bys of Ganimede, Callisto and Europa; Final circular orbit around Europa with a height of 100 km; Soft landing, target surface mission duration 60 days. Surface analysis by drilling (30 cm depth) possibly melting probe (<5 kg). Orbiter supports telecommunication. Optional TM directly to Earth via VLBI Target total radiation dose <100kRad behind 5 g/cm2 Al (300 kRad tolerant components) Roscosmos IKI TSNIIMASH Lavochkin Assoc

Laplace-Europa Lander mission: Science Resources: 50 kg on the lander, including sample handling and (partially) radiation shield 3.2 kbit/s via HGA to 70-m dishes Lander data relay via orbiter 50 kg on the orbiter, including (partially) radiation shield Goals: The main appeal of the present mission is search for life on or its signatures on Europa Sample acquisition, concentration Subsurface access Establishing geophysical and chemical context Biology-driven experiments should provide valuable information regardless of the biology results Lander is to provide ground truth for remote measurements and enhance the detection limits Orbiter: versatile remote observations; landing site characterization; Jupiter science Proof-of-the-concept payloads Lander: 12 instruments  20 kg 4-5 kg melting probe Drill for 30-cm depth Orbiter: 6 instruments, incl. radioscience Roscosmos IKI TSNIIMASH Lavochkin Assoc

Example payload for Europa lander Instrument Conditions Composition Habitability Prototype Mass (estimated) Seismometer   OPTIMISM/Mars 96 495g +electronics Magnetometer MMO Bepi Colombo 770g TV camera set CIVA/Rosetta; Phobos 11 1200g Optical microscope Beagle-2; Phobos 11 300g IR spectroscopy No direct prototype; technique well established (2000g) IR close-up spectrometer CIVA/Rosetta MicrOmega/ExoMars (1000g) GCMS GAP/Phobos 11; COSAC/Rosetta (5000g) Wet chemistry set (option 1) Urey/ExoMars1 2000g Immuno-arrays (option 2) SOLID/ExoMars1 Raman spectroscopy RAMAN-LIBS/ExoMars1 1100g2 Laser-ablation MS LASMA/Phobos 11 1000g XRS (TBD) No prototype Various sensors MUPUS/Rosetta 2350g Radiation dose RADOM/Chandrayaan-1 100g 20315g Roscosmos IKI TSNIIMASH Lavochkin Assoc

JUICE – Laplace cooperation options JUICE considered scenario: Focus on Ganymede Callisto Jupiter 2 Europa fly-bys Cooperation options: Laplace in present form with Europa landing emphasis and relay orbiter; science cooperation and science instruments exchange. Coordinated observations of Ganymede Landing on Ganymede; possible relay via JUICE EJSM  JUICE consequences of JEO loss Drastic decrease of Europa science Non-compromised Ganymede and Jupiter science Roscosmos IKI TSNIIMASH Lavochkin Assoc

Laplace – JUICE cooperation options Pros Contras 1. Laplace in present form with Europa landing emphasis and relay orbiter; science cooperation/ instrument exchange. Recovery of the most of EJSM science in a joint ESA-Roscosmos mission Landing on Europa The most technically complicated, Europa orbiter suffers from very high radiation load, high risk of late feasibility problems 2. Landing on Ganymede; possible relay via JUICE Factor of 100 less radiation load on Laplace Surface science on Ganymede To abandon the independent relay is programmatically risky. Only the radiation factor is reduced for the lander, other challenges remain Roscosmos IKI TSNIIMASH Lavochkin Assoc