. סמינר 2 במדעי המחשב סמסטר חרף מרצה הרצאה טל'משרדיום ושעות קבלהדואר אלקטרוני שלמה מורן טאוב 6, יום ה' 14:30-16: טאוב 639ה'
סמינר במדעי המחשב 3 סמסטר ב ', תשס " ג הרשמה לקורס כל מי שרשום לקורס, או לא רשום אך מעונין להרשם – שיירשם בדף הנוכחות. עדיפות לאלו שאי רישום לסמינר עלול לעכב את סיום לימודיהם. תלמידי תואר שני המעונינים להרשם – נא שלחו לי דוא " ל. אישור הרשמה מותנה במקומות פנויים בקורס.
סמינר במדעי המחשב 3 סמסטר ב ', תשס " ג דרישות הקורס המשתתפים בקורס יעבירו הרצאות על אלגוריתמים הקשורים לבניית עצים פילוגנטיים ( עצי אבולוציה ). נושאי ההרצאה יילקחו ממאמרים ב רשימה המופיעה באתר הקורס. רשימה המופיעה באתר הקורס אחת או שתי ההרצאות הראשונות ( כולל הנוכחית ) יינתנו על ידי המרצה. הרצאת סטודנטים ראשונה תינתן לכל המאוחר ב מבנה הציון : % הרצאה, % נוכחות. ייתכן בוחן סיום לבדיקת בקיאות בהרצאות שהועברו.
סמינר במדעי המחשב 3 סמסטר ב ', תשס " ג הכנת הרצאה ככלל, ההרצאות יוכנו ויוגשו בזוגות, כל זוג ירצה שעתיים ( פגישה אחת ). יש להכין תקציר של ההרצאה, שיחולק לסטודנטים בכתה. ניתן להעזר במרצה לפני ההרצאה. בתאום עם המרצה, ניתן להציג רק חלק מהמאמר. יש לשלוח אל המרצה בדוא " ל את תקציר ההרצאה לפחות 72 שעות לפני ההרצאה. התקציר יועלה על אתר הקורס.
סמינר במדעי המחשב 3 סמסטר ב ', תשס " ג רישום נוכחות : 1. ניקוד על נוכחות ייעשה מהרצאה שניה ( ) והלאה. 2. היעדרות מהרצאה תחשב מוצדקת עבור מי שיש לו אישור מילואים \ מחלה של ארבעה ימים או יותר. 3. למי שתהיה היעדרות לא מוצדקת אחת יוכל לכתוב תקציר של ההרצאה ממנה נעדר ( עד שני עמודים מודפסים – ניתן לשלוח אלי קבצים בדאר אלקטרוני ), ויוחזרו לו חלק או מלוא הנקודות שירדו מציונו בגין אותה היעדרות. מועד אחרון להגשת התקציר היום האחרון בסמסטר. אלי 4. מי שתהיה לו יותר מהיעדרות לא מוצדקת אחת יוכל לסכם, בתאום אתי ובהיקף שייקבע על ידי, את אחת ההרצאות מהן נעדר, ויוחזרו לו חלק או מלוא הנקודות שירדו מציונו בגין אותן היעדרויות.
6 הקצאת הרצאות ראשונות : מיד לאחר הרצאה זו מוזמנים אלי למשרד אלו המוכנים להרצות עד מחצית נובמבר, לצורך קבלת המאמרים להרצאה. הקצאת הרצאות מאוחרות יותר : סטודנטים הרשומים לקורס מתבקשים לשלוח אלי תוך שבוע מהיום, או מיד לאחר אישור הרשמתם: 1.תאריכים בהם לא יוכלו להרצות מסיבות מלואים, 2.(מומלץ) זמני הרצאה מועדפים, בני זוג מוסכמים להרצאה. המגמה לקבוע שבוץ ההרצאות עד ההרצאה של ה
7 Course Prerequisites Computer Science and Probability Background u Data structure 1 (cs234218) u Algorithms 1 (cs234247) u Computability theory (cs236343) u Probability (any course) Not a prerequisite, but recommended: u Algorithms in Computational Biology (cs236522).
8 Questions so far? Introduction
9 Evolution Evolution of new organisms is driven by u Diversity l Different individuals carry different variants of the same basic blue print u Mutations l The DNA sequence can be changed due to single base changes, deletion/insertion of DNA segments, etc. u Selection bias
10 The Tree of Life Source: Alberts et al
11 Primate evolution A phylogeny is a tree that describes the sequence of speciation events that lead to the forming of a set of current day species; also called a phylogenetic tree.
12 Historical Note u Until mid 1950’s phylogenies were constructed by experts based on their opinion (subjective criteria) u Since then, focus on objective criteria for constructing phylogenetic trees l Thousands of articles in the last decades u Important for many aspects of biology l Classification l Understanding biological mechanisms
13 Morphological vs. Molecular u Classical phylogenetic analysis: morphological features: number of legs, lengths of legs, etc. u Modern biological methods allow to use molecular features l Gene sequences l Protein sequences u Analysis based on homologous sequences (e.g., globins) in different species
14 Morphological topology Archonta Glires Ungulata Carnivora Insectivora Xenarthra (Based on Mc Kenna and Bell, 1997)
15 RatQEPGGLVVPPTDA RabbitQEPGGMVVPPTDA GorillaQEPGGLVVPPTDA CatREPGGLVVPPTEG From sequences to a phylogenetic tree There are many possible types of sequences to use (e.g. Mitochondrial vs Nuclear proteins).
16 Theory of Evolution u Basic idea l speciation events lead to creation of different species. l Speciation caused by physical separation into groups where different genetic variants become dominant u Any two species share a (possibly distant) common ancestor
17 Phylogenenetic trees u Leafs - current day species u Internal vertices - hypothetical most recent common ancestors u Edges length - “time” from one speciation to the next AardvarkBisonChimpDogElephant
18 Dangers in Molecular Phylogenies u We have to emphasize that gene/protein sequence can be homologous for several different reasons: u Orthologs -- sequences diverged after a speciation event u Paralogs -- sequences diverged after a duplication event u Xenologs -- sequences diverged after a horizontal transfer (e.g., by virus)
19 Dangers of Paralogs Speciation events Gene Duplication 1A 2A 3A3B 2B1B
20 Dangers of Paralogs Speciation events Gene Duplication 1A 2A 3A3B 2B1B If we happen to consider only species 1A, 2B, and 3A, we get a wrong tree that does not represent the phylogeny of the host species of the given sequences because duplication does not create new species. In the sequel we assume all given sequences are orthologs. S S S
21 Types of Trees A natural model to consider is that of rooted trees Common Ancestor
22 Types of trees Unrooted tree represents the same phylogeny without the root node Depending on the model, data from current day species does not distinguish between different placements of the root.
23 Rooted versus unrooted trees Tree a a b Tree b c Tree c Represents the three rooted trees
24 Positioning Roots in Unrooted Trees u We can estimate the position of the root by introducing an outgroup: l a set of species that are definitely distant from all the species of interest AardvarkBisonChimpDogElephant Falcon Proposed root
25 Type of Data u Distance-based l Input is a matrix of distances between species l Can be fraction of residue they disagree on, or alignment score between them, or … u Character-based l Examine each character (e.g., residue) separately
26 Three Methods of Tree Construction u Distance- A weighted tree that realizes the distances between the objects. u Parsimony – A tree with a total minimum number of character changes between nodes. u Maximum likelihood - Finding the “most probable” tree.
27 Molecular clock The tree has all leaves in the same depth. When this property holds, the phylogenetic tree is said to satisfy a molecular clock. Namely, the time from a speciation event to the formation of current species is identical for all paths (wrong assumption in reality).
28 Molecular Clock UPGMA 2341 UPGMA constructs trees that satisfy a molecular clock, even if the true tree does not satisfy a molecular clock.
29 Restrictive Correctness of UPGMA Proposition: If the tree T satisfies a molecular clock, then UPGMA will reconstruct T. Proof idea: Move a horizontal line from the bottom of the T to the top. Whenever an internal node is formed, the algorithm will create it.
30 Additivity Molecular clock: a special case of additive distances: distances that can be realized by a tree. Always true for 3 or less vertices: a b c i j k
31 Additive sets Given a set M of L objects with pairwise distances: u d(i,i)=0, and for i≠j, d(i,j)>0 u d(i,j)=d(j,i). u For all i,j,k it holds that d(i,k) ≤ d(i,j)+d(j,k). we say that the set is additive if there is a tree T, L of its nodes correspond to the L objects, with positive weights on the edges, such that for all i,j, d(i,j) = d T (i,j), the length of the path from i to j in T. Note 1: If the tree is required to be binary, the edge weights are required to be non-negative. Note 2: For simplicity, we will assume the nodes corresponding to objects are all leaves
32 Important Note u In reality, the input data is not an additive set. u So we need the algorithm to return a tree which approximates the distances of the input data. u A natural requirement: If the input set is additive, then the algorithm should return a correct tree (which is unique if all distances are positive). u Algorithmic questions: Decide if a given set is additive, and if it is, construct the corresponding weighted tree.
33 Basic property of Additivity u Suppose input distances are additive. u For any three vertices i,j,k there is a “junction” m. u Thus a b c i j k m
34 Identifying additive sets: The four points condition Theorem: A set M is additive iff any subset of four objects can be labeled i,j,k,l so that: d(i,j) +d(k,l) = d(i,l) +d(k,j) ≥ d(i,k) + d(j,l) i l k j Proof: Additivity 4P Condition: By the figure...
35 The four point condition d(i,j) +d(k,l) = d(i,l) +d(k,j) ≥ d(i,k) + d(j,l) 4P Condition Additivity: Induction on the number of objects L. For L ≤ 3 the condition is empty and tree exists. So assume L>3. Let a set of objects {1,..,L} be given, with pairwise distances which satisfy the 4P condition.
36 Induction step: u Remove Object L from the set u By induction, there is a tree for the L-1 nodes, T’. u For each pair of labeled nodes (i,j) in T’, let a ij, b ij, c ij be defined by the following figure: a ij b ij c ij i j L m ijL
37 Induction step: u Pick i and j that minimize c ij. u T is constructed by adding L (and possibly m ijL ) to T’, as in the figure. u Remains to prove: For each k ≠ i,j: d(k,L) = d T (k,L). a ij b ij c ij i j L m ijL T’
38 Induction step Proof according the location of m ijk on T’. Case 1: m ijk ≠ m ijL. WLOG Assume that m ijk lies between m ijL and j. By induction hypothesis: d(i,j )=d T (i,j), d(i,k )=d T (i,k), d(j,k )=d T (j,k) By construction: d(i,L )=d T (i,L), d(j,L )=d T (j,L) Need to prove: d(k,L) = d T (k,L) a ij b ij c ij i j L m ijL T’ k m ijk
39 Induction step Proof case 1: m ijk is located on T’ as shown. By the 4P condition on {i,j,k,L}: d(k,L) +d(i,j) = d(j,L) +d(i,k)> d(i,L) +d(j,k ): and by the location of m ijk : d T (k,L) +d(i,j) = d(j,L) +d(i,k): Which implies that d(k,L) = d T (k,L). a ij b ij c ij i j L m ijL T’ k m ijk
40 Induction step (cont.) Case 2: m ijk = m ijL. It is suffice to prove that d(k,L) +d(i,j) = d(j,L) +d(i,k). By the 4P condition on {i,j,k,L} and the fact that: d(j,L) +d(i,k) = d(i,L) +d(j,k), we have that: d(k,L) +d(i,j) ≤ d(j,L) +d(i,k), c ij i j L m ijL T’ k
41 Induction step (end) It remains to prove that d(k,L) +d(i,j) ≥ d(j,L) +d(i,k): this is proved by the formula below. The left inequality is implied by the minimality of c ij. aijaij b ij c ij i j L m ijL T’ k
42 Constructing additive trees: The neighbor finding problem The formula shows that if we knew that i and j are neighboring leaves, then we can construct their parent node m and compute the distances of m to all other leaves m. We remove nodes i,j and add m.
43 Neighbor Joining Algorithms Set L to contain all leaves Iteration: Choose i,j such that i,j are leaves with same father. Create new node m, and set remove i,j from L, and add m Terminate: when |L| =2, connect two remaining nodes i j m k
44 Neighbor Joining Algorithms Question: How do we decide, from the distance matrix, if vertices i and j are neighboring leaves? This is one of the topics to be discussed.