Let’s Open Up New Fields for Next 10X! Koji Inoue Kyushu University, Japan

Slides:



Advertisements
Similar presentations
Vectors, SIMD Extensions and GPUs COMP 4611 Tutorial 11 Nov. 26,
Advertisements

Instruction-Level Parallel Processors {Objective: executing two or more instructions in parallel} 4.1 Evolution and overview of ILP-processors 4.2 Dependencies.
VLSI Communication SystemsRecap VLSI Communication Systems RECAP.
Why GPU Computing. GPU CPU Add GPUs: Accelerate Science Applications © NVIDIA 2013.
Performance Evaluations of Finite Difference Applications Realized on a Single Flux Quantum Circuits-Based Reconfigurable Accelerator Hiroaki Honda 1,
 Understanding the Sources of Inefficiency in General-Purpose Chips.
1 An Accelerator Based on Single-Flux Quantum Circuits for a High-Performance Reconfigurable Computer F. Mehdipour*, Hiroaki Honda**, H. Kataoka*, K. Inoue*
Kyushu University KL, Malaysia Hardware and Software Requirements for Implementing a High-Performance Superconductivity Circuits-Based Accelerator Farhad.
Reconfigurable Computing: What, Why, and Implications for Design Automation André DeHon and John Wawrzynek June 23, 1999 BRASS Project University of California.
Zheming CSCE715.  A wireless sensor network (WSN) ◦ Spatially distributed sensors to monitor physical or environmental conditions, and to cooperatively.
GPUs. An enlarging peak performance advantage: –Calculation: 1 TFLOPS vs. 100 GFLOPS –Memory Bandwidth: GB/s vs GB/s –GPU in every PC and.
Introduction CS 524 – High-Performance Computing.
Instruction Level Parallelism (ILP) Colin Stevens.
Spring 08, Jan 15 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Introduction Vishwani D. Agrawal James J. Danaher.
Spring 07, Jan 16 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Introduction Vishwani D. Agrawal James J. Danaher.
Chapter Hardwired vs Microprogrammed Control Multithreading
V The DARPA Dynamic Programming Benchmark on a Reconfigurable Computer Justification High performance computing benchmarking Compare and improve the performance.
Analysis and Performance Results of a Molecular Modeling Application on Merrimac Erez, et al. Stanford University 2004 Presented By: Daniel Killebrew.
University of Michigan Electrical Engineering and Computer Science Low-Power Scientific Computing Ganesh Dasika, Ankit Sethia, Trevor Mudge, Scott Mahlke.
Power-Aware Computing 101 CS 771 – Optimizing Compilers Fall 2005 – Lecture 22.
Juanjo Noguera Xilinx Research Labs Dublin, Ireland Ahmed Al-Wattar Irwin O. Irwin O. Kennedy Alcatel-Lucent Dublin, Ireland.
Performance Evaluation of Hybrid MPI/OpenMP Implementation of a Lattice Boltzmann Application on Multicore Systems Department of Computer Science and Engineering,
ECE 526 – Network Processing Systems Design Network Processor Architecture and Scalability Chapter 13,14: D. E. Comer.
A Thermal-Aware Mapping Algorithm for Reducing Peak Temperature of an Accelerator Deployed in a 3D Stack A Thermal-Aware Mapping Algorithm for Reducing.
Low Power Techniques in Processor Design
COMPUTER SCIENCE &ENGINEERING Compiled code acceleration on FPGAs W. Najjar, B.Buyukkurt, Z.Guo, J. Villareal, J. Cortes, A. Mitra Computer Science & Engineering.
A RISC ARCHITECTURE EXTENDED BY AN EFFICIENT TIGHTLY COUPLED RECONFIGURABLE UNIT Nikolaos Vassiliadis N. Kavvadias, G. Theodoridis, S. Nikolaidis Section.
Technical Seminar Introduction to networking with Linux Administration Amit Kumar Sahoo EC ADVANCED EMBEDDED MICROPROCESSORS AND APPLICATIONS.
Sogang University Advanced Computing System Chap 1. Computer Architecture Hyuk-Jun Lee, PhD Dept. of Computer Science and Engineering Sogang University.
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
1 Advance Computer Architecture CSE 8383 Ranya Alawadhi.
Kyushu University Koji Inoue ICECS'061 Supporting A Dynamic Program Signature: An Intrusion Detection Framework for Microprocessors Koji Inoue Department.
Master Program (Laurea Magistrale) in Computer Science and Networking High Performance Computing Systems and Enabling Platforms Marco Vanneschi 1. Prerequisites.
80-Tile Teraflop Network-On- Chip 1. Contents Overview of the chip Architecture ▫Computational Core ▫Mesh Network Router ▫Power save features Performance.
1 - CPRE 583 (Reconfigurable Computing): Reconfigurable Computing Architectures Iowa State University (Ames) Reconfigurable Architectures Forces that drive.
A Hybrid Design Space Exploration Approach for a Coarse-Grained Reconfigurable Accelerator Farhad Mehdipour, Hamid Noori, Hiroaki Honda, Koji Inoue, Kazuaki.
Axel Jantsch 1 Networks on Chip Axel Jantsch 1 Shashi Kumar 1, Juha-Pekka Soininen 2, Martti Forsell 2, Mikael Millberg 1, Johnny Öberg 1, Kari Tiensurjä.
1)Leverage raw computational power of GPU  Magnitude performance gains possible.
DIGITAL SIGNAL PROCESSORS. Von Neumann Architecture Computers to be programmed by codes residing in memory. Single Memory to store data and program.
Design Space Exploration for a Coarse Grain Accelerator Farhad Mehdipour, Hamid Noori, Morteza Saheb Zamani*, Koji Inoue, Kazuaki Murakami Kyushu University,
Developing an Architecture for a Single-Flux Quantum Based Reconfigurable Accelerator F. Mehdipour, Hiroaki Honda *, H. Kataoka, K. Inoue and K. Murakami.
Optimizing the Architecture of SFQ-RDP (Single Flux Quantum- Reconfigurable Datapath) F. Mehdipour*, Hiroaki Honda **, H. Kataoka*, K. Inoue* and K. Murakami*
Gravitational N-body Simulation Major Design Goals -Efficiency -Versatility (ability to use different numerical methods) -Scalability Lesser Design Goals.
Graphical Design Environment for a Reconfigurable Processor IAmE Abstract The Field Programmable Processor Array (FPPA) is a new reconfigurable architecture.
ROUTING ARCHITECTURE AND ALGORITHMS FOR A SUPERCONDUCTIVITY CIRCUITS-BASED COMPUTING HARDWARE Farhad Mehdipour, Hiroaki Honda, Hiroshi Kataoka, Koji Inoue,
NISC set computer no-instruction
1 - CPRE 583 (Reconfigurable Computing): Reconfigurable Computing Architectures Iowa State University (Ames) CPRE 583 Reconfigurable Computing Lecture.
VADA Lab.SungKyunKwan Univ. 1 L5:Lower Power Architecture Design 성균관대학교 조 준 동 교수
CPS 258 Announcements –Lecture calendar with slides –Pointers to related material.
KERRY BARNES WILLIAM LUNDGREN JAMES STEED
Parallel Computers Today Oak Ridge / Cray Jaguar > 1.75 PFLOPS Two Nvidia 8800 GPUs > 1 TFLOPS Intel 80- core chip > 1 TFLOPS  TFLOPS = floating.
Philipp Gysel ECE Department University of California, Davis
SEPTEMBER 8, 2015 Computer Hardware 1-1. HARDWARE TERMS CPU — Central Processing Unit RAM — Random-Access Memory  “random-access” means the CPU can read.
Analyzing Memory Access Intensity in Parallel Programs on Multicore Lixia Liu, Zhiyuan Li, Ahmed Sameh Department of Computer Science, Purdue University,
ECE354 Embedded Systems Introduction C Andras Moritz.
NVIDIA’s Extreme-Scale Computing Project
Concurrent Data Structures for Near-Memory Computing
FPGAs in AWS and First Use Cases, Kees Vissers
Super Quick Architecture Review
Unit 2 Computer Systems HND in Computing and Systems Development
Coe818 Advanced Computer Architecture
Characteristics of Reconfigurable Hardware
Masamitsu Tanaka, Nagoya Univ.
A High Performance SoC: PkunityTM
Chapter 1 Introduction.
A New Design Approach for High-Throughput Arithmetic Circuits for Single-Flux-Quantum Microprocessors Masamitsu Tanaka, Nagoya Univ., JSPS Co-workers:
Lecture 6 CdM-8 CPU overview
ESE532: System-on-a-Chip Architecture
Chapter 4 The Von Neumann Model
Presentation transcript:

Let’s Open Up New Fields for Next 10X! Koji Inoue Kyushu University, Japan

We Need More Performance! But… High performance is exactly required more! – Supercomputing, Desktop, Laptop, Cellar Phone, Home Games, and so on But, power is a SERIOUS problem! – Device Reliability – Grobal Warming X 5X Total Power Consumption in Japan Billions KW/h Need drastic improvement! –Not Incremental!

How? Fundamental concept for low-power has matured in “Our Current Field”! – DVS, DVFS, Selective Activation, Exploiting Prediction, and so on… Suggestion – Move to a new (or strange) field! – Orchestrate computing resources effectively!

New Fields! Revisit the system stack from circuit/architecture level to algorithm level on new fields! 3D-IC Implementation with Wireless Links Keio University Yokohama National University Nagoya University Superconducting rapid single-flux-quantum (SFQ) New Reconfigurable Devices Advanced Industrial Science and Technology

The Case for SFQ-RDP Project RSFQ with new architecture 10 TFLOPS Desk-top Computer Kyushu University, Yokohama National University, Nagoya University, SRL/ISTEC

Superconducting rapid single-flux- quantum (SFQ) : Device Level Gate delay [s] Bit energy [J] Energy-delay products Superconducting wire Ballistic propagation MCM developed by SRL

Large-Scale Reconfigurable Data-Path for SFQ : Architecture Level 1K FPUs operate at 80 GHz Re-configurable operand network Much simple organization for SFQ design (No feedback loops) Make a good balance between “Parallel Exe. Vs. Sequential Exe.”

How To Exploit A Number of FPUs: Compiler Level Large DFGs are extracted from source codes They are executed in pipeline fashion SFQ-RDP is used as an “Efficient Accelerator” Application Program DFG Extractor (w/ source level optimization) Mapping

How To Exploit A Number of FPUs: Algorithm Level tei(4,4,4,4)= (((3+2*p*(4*PAx*PBx+PBx**2+PAx**2*(1+2*p*PBx**2)))*(3+2*q*(4*QCx*QDx+QDx**2+QCx**2*(1+2*q*QDx**2)))*f(0,t))/(p**2*q**2)+(4*(3+2*p*(4*PAx*PBx+PBx* *2+PAx**2*(1+2*p*PBx**2)))*PQx*(QCx+QDx)*(3+2*q*QCx*QDx)*f(1,t))/(p*q*(p+q))(4*(PAx+PBx)*(3+2*p*PAx*PBx)*PQx*(3+2*q*(4*QCx*QDx+QDx**2+QCx**2*(1+2*q*QDx**2 )))*f(1,t))/(p*q*(p+q))(8*(PAx+PBx)*(3+2*p*PAx*PBx)*(QCx+QDx)*(3+2*q*QCx*QDx)*(((p+q)*f(1,t))+2*p*PQx**2*q*f(2,t)))/(p*q*(p+q)**2)+(2*(3+2*p*(4*PAx*PBx+PBx**2+PAx**2 *(1+2*p*PBx**2)))*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(((p+q)*f(1,t))+2*p*PQx**2*q*f(2,t)))/(p*q**2*(p+q)**2)+(2*(3+p*(PAx**2+4*PAx*PBx+PBx**2))*(3+2*q*(4*QCx*QDx+Q Dx**2+QCx**2*(1+2*q*QDx**2)))*(((p+q)*f(1,t))+2*p*PQx**2*q*f(2,t)))/(p**2*q*(p+q)**2)+(4*(3+2*p*(4*PAx*PBx+PBx**2+PAx**2*(1+2*p*PBx**2)))*PQx*(QCx+QDx)*(3*(p+q)*f( 2,t)+2*p*PQx**2*q*f(3,t)))/(q*(p+q)**3)\+(8*(3+p*(PAx**2+4*PAx*PBx+PBx**2))*PQx*(QCx+QDx)*(3+2*q*QCx*QDx)*(3*(p+q)*f(2,t)+2*p*PQx**2*q*f(3,t)))/(p*(p+q)**3)(8*(PAx+ PBx)*(3+2*p*PAx*PBx)*PQx*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(3*(p+q)*f(2,t)+2*p*PQx**2*q*f(3,t)))/(q*(p+q)**3)(4*(PAx+PBx)*PQx*(3+2*q*(4*QCx*QDx+QDx**2+QCx**2*( 1+2*q*QDx**2)))*(3*(p+q)*f(2,t)+2*p*PQx**2*q*f(3,t)))/(p*(p+q)**3)+((3+2*p*(4*PAx*PBx+PBx**2+PAx**2*(1+2*p*PBx**2)))*(3*(p+q)**2*f(2,t)+4*p*PQx**2*q*(3*(p+q)*f(3,t)+p* PQx**2*q*f(4,t))))/(q**2*(p+q)**4)(8*(PAx+PBx)*(3+2*p*PAx*PBx)*(QCx+QDx)*(3*(p+q)**2*f(2,t)+4*p*PQx**2*q*(3*(p+q)*f(3,t)+p*PQx**2*q*f(4,t))))/(q*(p+q)**4)(8*(PAx+PBx)*( QCx+QDx)*(3+2*q*QCx*QDx)*(3*(p+q)**2*f(2,t)+4*p*PQx**2*q*(3*(p+q)*f(3,t)+p*PQx**2*q*f(4,t))))/(p*(p+q)**4)+(4*(3+p*(PAx**2+4*PAx*PBx+PBx**2))*(3+q*(QCx**2+4*QCx* QDx+QDx**2))*(3*(p+q)**2*f(2,t)+4*p*PQx**2*q*(3*(p+q)*f(3,t)+p*PQx**2*q*f(4,t))))/(p*q*(p+q)**4)+((3+2*q*(4*QCx*QDx+QDx**2+QCx**2*(1+2*q*QDx**2)))*(3*(p+q)**2*f(2,t) +4*p*PQx**2*q*(3*(p+q)*f(3,t)+p*PQx**2*q*f(4,t))))/(p**2*(p+q)**4)(4*p*(PAx+PBx)*(3+2*p*PAx*PBx)*PQx*(15*(p+q)**2*f(3,t)+4*p*PQx**2*q*(5*(p+q)*f(4,t)+p*PQx**2*q*f(5,t)) ))/(q*(p+q)**5)+(8*(3+p*(PAx**2+4*PAx*PBx+PBx**2))*PQx*(QCx+QDx)*(15*(p+q)**2*f(3,t)+4*p*PQx**2*q*(5*(p+q)*f(4,t)+p*PQx**2*q*f(5,t))))/(p+q)**5+(4*PQx*q*(QCx+QDx)*( 3+2*q*QCx*QDx)*(15*(p+q)**2*f(3,t)+4*p*PQx**2*q*(5*(p+q)*f(4,t)+p*PQx**2*q*f(5,t))))/(p*(p+q)**5)(8*(PAx+PBx)*PQx*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(15*(p+q)**2*f(3,t )+4*p*PQx**2*q*(5*(p+q)*f(4,t)+p*PQx**2*q*f(5,t))))/(p+q)**5+(8*(PAx+PBx)*(QCx+QDx)*(15*(p+q)**3*f(3,t)+30*p*PQx**2*q*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*f(5,t))8*p**3*P Qx**6*q**3*f(6,t)))/(p+q)**6+(2*(3+p*(PAx**2+4*PAx*PBx+PBx**2))*(15*(p+q)**3*f(3,t)30*p*PQx**2*q*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*f(5,t))+8*p**3*PQx**6*q**3*f(6,t)))/( q*(p+q)**6)+(2*(3+q*(QCx**2+4*QCx*QDx+QDx**2))*(15*(p+q)**3*f(3,t)30*p*PQx**2*q*(p+q)*(3*(p+q)*f(4,t)+2*p*PQx**2*q*f(5,t))+8*p**3*PQx**6*q**3*f(6,t)))/(p*(p+q)**6)  787 MUL, 261 ADD, 69 FUNC Computation of molecular orbital while (I < 1000): I ++:

Koji’s Message (from Core to Data-Center) Move to new fields! Orchestrate computing resources effectively! – Efficient acceleration (Parallelization, Specialization) – Make a good balance between many things (Concurrency Management)

Thanks!!

New Fields! Revisit the system stack from circuit/architecture level to algorithm level on emerging devices!

SMAC :...::: SMAC SB ORN... ORN... : : : : ORN... ORN FPU SFQ RDP ( 32FPU×32chips ) (4 GFLOPS / FPU) 4.2 K CMOS CPU (1chip) Memory band width per MCM : 256GB/ s (=16GB/s ×16 channels) (34 chips ) ×4MCM 2TB memory module ( FB-DIMM 128GB] ×16 modules ) SFQ 0.5um process