2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation1 Chapter 3. Theorem of momentum and the law of momentum conservation.

Slides:



Advertisements
Similar presentations
Forces – Chapter 4.
Advertisements

Chapter 5 – Force and Motion I
Forces and Newton’s Laws of Motion
Chapter 4 The Laws of Motion.
Dr. Steve Peterson Physics 1025F Mechanics NEWTON’S LAWS Dr. Steve Peterson
Applications of Newton’s Laws
在近年的高考地理试题中,考查地球上 两点间最短航线的方向问题经常出现,由于 很多学生对这类问题没有从本质上搞清楚, 又缺乏空间想象能力,只是机械地背一些结 论,造成解这类题目时经常出错。 地球上两点间的最短航线方向问题.
概率统计( ZYH ) 节目录 3.1 二维随机变量的概率分布 3.2 边缘分布 3.4 随机变量的独立性 第三章 随机向量及其分布 3.3 条件分布.
实验:验证牛顿第二定律. 1 、实验目的:探究 a 与 F 、 m 的定量关系 2 、实验原理:控制变量法 A 、 m 一定时,探究 a 随 F 的变化关系 B 、 F 一定时, 探究 a 随 m 的变化关系.
Applications of Newton’s Laws
平衡态电化学 化学电池 浓差电池 电极过程动力学.
第二章 质点组力学 质点组:许多(有限或无限)相 互联系的质点组成的系统 研究方法: 1. 分离体法 2. 从整体考虑 把质点的三个定理推广到质点组.
理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
Chapter 4 Forces and Mass.
Physics 151: Lecture 9, Pg 1 Physics 151: Lecture 9 l Announcements çHomework #3 (due this Fri. 9/22/06, 5 PM) çHomework #4 (due Mon. 10/2/06, 5 PM) l.
第二章 随机变量及其分布 第一节 随机变量及其分布函数 一、随机变量 用数量来表示试验的基本事件 定义 1 设试验 的基本空间为 , ,如果对试验 的每一个基 本事件 ,规定一个实数记作 与之对应,这样就得到一个定义在基本空 间 上的一个单值实函数 ,称变量 为随机变量. 随机变量常用字母 、 、 等表示.或用.
Ballistic Cart Demo Discuss law of cosines for planeinwindb problem Other HW problems?
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
非均相物系的分离 沉降速度 球形颗粒的 :一、自由沉降 二、沉降速度的计算 三、直径计算 1. 试差法 2. 摩擦数群法 四、非球形颗粒的自由沉降 1. 当量直径 de :与颗粒体积相等的圆球直径 V P — 颗粒的实际体积 2. 球形度  s : S—— 与颗粒实际体积相等的球形表面积.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
化学系 3 班 何萍 物质的分离原理 世世界上任何物质,其存在形式几乎均以混合 物状态存在。分离过程就是将混合物分成两 种或多种性质不同的纯物质的过程。 分分子蒸馏技术是一种特殊的液-液分离技术。
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
25  C 时电解质水溶液的摩尔电导率 p.290. 注意强、弱电解质溶液的区别 p HCl KCl HAc 430.
导体  电子导体  R   L  i 离子导体  ( 平衡 ) mm   .
可逆电动势 可逆电动势必须满足的两个条件 1. 电池中的化学反应可向 正反两方向进行 2. 电池在十分接近平衡 状态下工作 Reversible Electromotive Force (emf)
第二十四讲 相位延时系统 相位超前系统 全通系统. 一、最小与最大相位延时系统、最小 与最大相位超前系统 LSI 系统的系统函数: 频率响应:
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
Applications of Newton’s Laws
Force Chapter 6. Force Any push or pull exerted on an object.
Motion & Force: Dynamics Physics 11. Galileo’s Inertia  Galileo attempted to explain inertia based upon rolling a ball down a ramp  Predict what would.
Chapter 4 The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
Chapter 2 Forces and Vectors
Types of Forces Contact Forces Forces at a distance.
CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.
Chapter 4 The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
SECOND LAW OF MOTION If there is a net force acting on an object, the object will have an acceleration and the object’s velocity will change. Newton's.
Chapter 4 Forces and the Laws of Motion. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant.
Chapter 4 Dynamics: Newton’s Laws of Motion
 Isaac Newton  Smart Guy  Liked Apples  Invented Calculus  Came up with 3 laws of motion  Named stuff after himself.
CHAPTER 4 FORCES IN 1-D FORCE Force is anything which causes a body to start moving when it is at rest, or stop when it is moving, or deflect once it.
Kinematics 一、运动学的研究对象及任务 1 .研究对象 Point(particle), Rigid body and System of Rigid Bodies. Point: 不计大小的几何点. 2 .研究任务 (1) 研究物体的机械运动及运动 的几何性质。 (2) 研究机构传动规律。
 F = ma  m is measured in kg  a is measured in m/s 2  F is measured in kg m/s 2, called a Newton (N)
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
Chapters 5, 6 Force and Motion. Newtonian mechanics Describes motion and interaction of objects Applicable for speeds much slower than the speed of light.
Forces and the Laws of Motion
天文物理學會講座 牛頓力學與天體運動.
Force Chapter 6. Force Any push or pull exerted on an object.
1 第 4 章 速度瞬心及其应用 ● 利用速度瞬心进行机构的速度分析 ● 将低副机构转变为高副机构 ( 瞬心线机 构,共轭曲线机构) ● 用低副机构的分析方法对高副机构进 行结构和运动分析 ( 高副低代 )
Chapter 5 The Laws of Motion.
Chapters 5, 6 Force and Laws of Motion. Newtonian mechanics Describes motion and interaction of objects Applicable for speeds much slower than the speed.
Forces and the Laws of Motion Chapter 4. Forces and the Laws of Motion 4.1 Changes in Motion –Forces are pushes or pullss can cause acceleration. are.
REVISION NEWTON’S LAW. Quantity with magnitude and direction. e.g. displacement, velocity, acceleration, force and weight.. VECTOR Quantity having only.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.
FORCES Chapter 5. Mechanics The study of Motion Isaac Newton, 1600’s The father of mechanics.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
第二节. 广告牌为什么会被风吹倒? 结构的稳定性: 指结构在负载的作用下 维持其原有平衡状态的能力。 它是结构的重要性质之一。
Weight = mass x acceleration due to gravity
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
Physics 1501: Lecture 8, Pg 1 Physics 1501: Lecture 8 l Announcements çHomework #3 : due next Monday l Topics çReview of Newton’s Laws. çFriction çSome.
Forces. What is a Force? A force is a push or pull acting on an object that changes the motion of the object.
The “Spring Force” If an object is attached to a spring and then pulled or pushed, the spring will exert a force that is proportional to the displacement.
§7.2 估计量的评价标准 上一节我们看到,对于总体 X 的同一个 未知参数,由于采用的估计方法不同,可 能会产生多个不同的估计量.这就提出一 个问题,当总体的一个参数存在不同的估 计量时,究竟采用哪一个好呢?或者说怎 样评价一个估计量的统计性能呢?下面给 出几个常用的评价准则. 一.无偏性.
Chapter 4 Forces in One Dimension. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Describes.
Chapter 4 Newton’s Laws.
Ch 4 Forces in One Dimension
The Laws of Motion (not including Atwood)
Forces Physics- Ms. Jeffrey.
Presentation transcript:

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation1 Chapter 3. Theorem of momentum and the law of momentum conservation 3.3 Some Particular Forces 几种特殊的力 Mechanics

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation2  Newton’s Laws tell us how an object moves given the forces applied  What are the causes of these forces? Need to have a detailed microscopic understanding of the interactions of the objects with their environments 3.3 Some Particular Forces

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation3  Four fundamental forces in nature: 1.Gravitational Force( 引力 )  Attractive force between all objects with mass;  Originates with the presence of matter. 3.3 Some Particular Forces 2.Electromagnetic Force( 电磁力 )  Includes basic electric and magnetic interactions;  acts on all objects with electrical charge;  responsible for binding of atoms and structure of material

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation4 3.Weak force( 弱力 )  responsible for radioactivity, fusion 4.Strong Force( 强力 )  Holds protons/neutrons together in the atomic nucleus Unified theory of electromagnetic and weak forces developed ~ Some Particular Forces  Four fundamental forces in nature:

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation5 In classical mechanics, only two forces are involved:  Gravitational force: Apparent in the Earth’s attraction for objects, which gives them their weight.  Electromagnetic force: All the other forces we normally consider are ultimately electromagnetic in origin Tension in string( 绳的张力 ) ; Contact force: normal force, friction,.. Elastic force: in spring 3.3 Some Particular Forces

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation6 Chapter 3. Theorem of momentum and the law of momentum conservation 3.3 Some Particular Forces Universal gravitational force and weight Spring force Tension in a rope Normal or Reaction Force Friction Mechanics

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation7  万有引力定律 (Law of universal gravitation) Universal gravitational force and weight

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation8  万有引力定律 (Law of universal gravitation) G : 万有引力常数 = 6.67 x Nm 2 kg -2, m 、 M : 质点的引力质量 (gravitational masses) r : m 相对于 M 的位置矢量 Newton published the law of gravitation in 1687 r M m F 两个有一定质量的质点沿它们的连线相互吸引,吸 引力的大小与两质点的质量的乘积成正比,与它们 之间的距离的平方成反比: - indicates attractive Universal gravitational force and weight

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Universal gravitational force and weight 半径为 R ,质量为 M 且均匀分布的球体对球外一质量为 m 的质 点的引力为: r M m

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Universal gravitational force and weight 引力质量和惯性质量 The force lawThe law of motion 不同性质的物 理定律中的量 考虑地球附近的自由落体运动:物体只受地球万有引力的作用  实验结果:在真空中,所有物体的自由落体加速度都为重力加 速度 g, 与物体的质量无关 最新实验结果:

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Universal gravitational force and weight How did Newton deduce the law of universal gravitation? Both a falling apple and the distant orbiting Moon accelerate toward the Earth; The force causing these accelerations is gravitational force a moon g RERE R  Dependence on Distance: R = 3.84 x 10 8 m R E = 6.37 x 10 6 m

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Universal gravitational force and weight How did Newton deduce the law of universal gravitation?  Dependence on Mass: The magnitude of the gravitational force should also depend on the common physical property of the Earth and the Moon  their masses Newton’s third law: M: mass of the Earth, m: mass of the Moon  If the magnitude of gravitational force depends on mass, it must involve the masses of both the Earth and Moon in a symmetric way.

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Universal gravitational force and weight How did Newton deduce the law of universal gravitation?  Dependence on Mass: If n =1, a grav  M Experiment: a grav does not depend on m

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation14  重力 (Weight): 当物体位于地球表面附近时,可只考虑地球对该物体的万 有引力而忽略所有其它的引力。 地球模型:质量为 m E 、半径为 R E 的均质球; 地球表面附近质量为 m 的物体的重力的大小 ( 物体到地球中心的距离为 R E ) : Universal gravitational force and weight 重力:地球对地球表面附近的物体的万有引力。 RERE mEmE m RERE

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation15 重力加速度 : g 依赖于地球的质量而与所研究的物体质量无关。 Mass of the Earth, M E = 5.97 x kg Radius of the Earth = 6.37 x 10 6 m 在重力的作用下,所 有物体的加速度的大 小都为 g! Universal gravitational force and weight

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation16 在地球表面的不同地方 g 的数值稍有不同 ( ms -2 ) Note: 质量和重力的区别: 质量 : 标量,是物体的固有属性,与相互作用无关 重力 : 矢量,是地球对物体的引力的量度 ( 或物体对地球的引 力的量度 ).  地球不是一个严格的球体;  地球的自转和轨道运动的影响 其大小 ( 重量 ) 依赖于重力加速度的大小 g. 当物体远离地球时,重力为零。 Universal gravitational force and weight

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation17 Chapter 3. Theorem of momentum and the law of momentum conservation 3.3 Some Particular Forces Universal gravitational force and weight Spring force Tension in a rope Normal or Reaction Force Friction Mechanics

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation18 Magnitude: proportional to distance that spring is compressed or stretched Direction: opposite to direction that spring is compressed or stretched Force exerted by a spring The direction of the force is toward the equilibrium position.  “restoring force”. x = 0 x F L0L0 L0L0 L 0 : the free(undeformed) length of the spring Spring force x = 0 L0L0 F

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation19 F = – k  x = – k (x – x 0 ) F = – k x if choose x 0 = 0 k is spring constant or stiffness ( 劲度系数 )stiffer spring  larger k x 0 is equilibrium position of spring The magnitude of the force is given by Hooke’s Law: x = 0 x F Spring force

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation20 Chapter 3. Theorem of momentum and the law of momentum conservation 3.3 Some Particular Forces Universal gravitational force and weight Spring force Tension in a rope Normal or Reaction Force Friction Mechanics

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Tension in a rope ←The force you would feel if you cut the rope and grabbed the ends. ←An action-reaction pair. Rope can be used to pull from a distance. TensionTension (T) at a certain position in a rope is the magnitude of the force acting across a cross-section of the rope at that position. cut T T T The rope is in “tension” as the two people pull on it. This stretching puts the rope in tension

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation22 T T´T´ mgmg T Consider a short segment of the rope. T, T´ : the forces exerted by the adjoining portion of the rope at each end of the segment mg : the weight of the segment T + T´ + mg = ma If the rope is massless. T = - T´ or T = T´ The tension T has the same magnitude at both ends of the small segment Tension in a rope  An ideal (massless) rope has constant tension along the rope.

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Tension in a rope mg T m Since a y = 0 (box not moving), T = mg The direction of the force provided by a rope is along the direction of the rope:

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Tension in a rope FF1FF1 ideal peg or pulley FF2FF2 FF | F 1 | = | F 2 | Pegs & Pulleys are used to change the direction of forces An ideal massless pulley or ideal smooth peg will change the direction of an applied force without altering the magnitude:

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Tension in a rope Pegs & Pulleys are used to change the direction of forces An ideal massless pulley or ideal smooth peg will change the direction of an applied force without altering the magnitude: mg T m T = mg F W,S = mg

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation26 Chapter 3. Theorem of momentum and the law of momentum conservation 3.3 Some Particular Forces Universal gravitational force and weight Spring force Tension in a rope Normal or Reaction Force Friction Mechanics

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation27 If a block of mass m 1 is at rest and in contact with a horizontal surface, a force provided by the surface supports the block, holding it at rest. l Since the block’s acceleration is zero in the vertical direction, the net force on the block is zero. The contact force is the normal force, N, because it is directed perpendicular, or normal, to the surface. N = m 1 g m1m1 N m1gm1g Normal or Reaction Force

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation28 Chapter 3. Theorem of momentum and the law of momentum conservation 3.3 Some Particular Forces Universal gravitational force and weight Spring force Tension in a rope Normal or Reaction Force Friction Mechanics

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Friction What does it do?  It opposes relative motion! How do we characterize this in terms we have learned? amaama F F APPLIED f f FRICTION gmggmg N i j  Friction results in a force in the direction opposite to the direction of relative motion!

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Friction Friction is caused by the “microscopic” interactions between the two surfaces: gmggmg amaama f f FRICTION N  Force of friction acts to oppose relative motion:  Parallel to surface  Perpendicular to Normal force

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Friction Two distinct cases:  Kinetic (sliding) friction( 滑动摩擦力 )  Static Friction( 静摩擦力 ) : Surfaces move relative to one another. Surfaces do not actually move.

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation Friction Model for Sliding Friction N The direction of the frictional force vector is perpendicular to the normal force vector N. f N The magnitude of the frictional force vector | f F | is proportional to the magnitude of the normal force | N |. f =  K N  The “heavier” something is, the greater the friction will be...makes sense  K : coefficient of kinetic friction. amaama F gmggmg N f

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation33 object in motion: F friction will oppose F push with a magnitude of  k F N =  k mg Since F push >=  k F N object can move. F g = mg F N = mg F push/pull F friction F push =  k F N F push >  k F N Object moves with constant v. Object accelerates with a = (F push -  k F N ) /m Friction

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation34 Static Friction A friction force also acts between two objects when there is no relative motion. force of friction opposes applied force magnitude equals applied force maximum magnitude proportional to the normal force f max =  s F N f FaFa  s is the static coefficient of friction we can’t calculate it but it is easy to measure as long as F a  f max the object doesn’t move Friction

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation35 object at rest: F g = mg F N = mg F push/pull F friction F friction will oppose F push up to a maximum magnitude of  s F N =  s mg. Since F push =<  s F N object can remain at rest Friction

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation36 Measuring  s with an inclined plane.  FNFN FgFg  F gy F gx f f max =  s F N block doesn’t slide if F gx < f max m g sin  <  s m g cos  Just slides when  s = tan  Friction

2006 年 11 月 9 日 8:00-9:50 Ch.3 Theorem of momentum and the law of moentum conservation37 Summary: Kinetic versus Static friction Graph of Frictional force vs Applied force: f Applied force F f = F f F =  K N f =  S N f =  K N at rest accelerating Friction