MEG 実験 背景ガンマ線の研究 澤田 龍 MEG コラボーレーション 東京大学素粒子物理国際研究センター 2010 年 9 月 11 日 日本物理学会 2010 年秋季大会 九州工業大学戸畑キャンパス.

Slides:



Advertisements
Similar presentations
ATLAS Tile Calorimeter Performance Henric Wilkens (CERN), on behalf of the ATLAS collaboration.
Advertisements

MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
1 N. Davidson E/p single hadron energy scale check with minimum bias events Jet Note 8 Meeting 15 th May 2007.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
1 Measurement of f D + via D +   + Sheldon Stone, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K- K+K+ “I charm you, by my once-commended.
Directional Detectors and Digital Calorimeters Ed Norbeck and Yasar Onel University of Iowa For the 25 th Winter Workshop on Nuclear Dynamics Big Sky,
Status of  b Scan Jianchun Wang Syracuse University Representing L b scanners CLEO Meeting 05/11/02.
1 Hadronic In-Situ Calibration of the ATLAS Detector N. Davidson The University of Melbourne.
In order to acquire the full physics potential of the LHC, the ATLAS electromagnetic calorimeter must be able to efficiently identify photons and electrons.
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
1 N. Davidson Calibration with low energy single pions Tau Working Group Meeting 23 rd July 2007.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
Photon reconstruction and calorimeter software Mikhail Prokudin.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
Study of response uniformity of LHCb ECAL Mikhail Prokudin, ITEP.
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
Preliminary comparison of ATLAS Combined test-beam data with G4: pions in calorimetric system Andrea Dotti, Per Johansson Physics Validation of LHC Simulation.
Status of W analysis in PHENIX Central Arm Kensuke Okada (RBRC) For the PHENIX collaboration RHIC Spin Collaboration meeting November 21, /21/20091K.Okada.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
Thomas Jefferson National Accelerator Facility Page 1 EC / PCAL ENERGY CALIBRATION Cole Smith UVA PCAL EC Outline Why 2 calorimeters? Requirements Using.
MEG 実験におけるミュー粒子放射崩壊の 測定と利用 日本物理学会第67回年次大会 ICEPP, the University of Tokyo 内山 雄祐.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
Analysis chain for MAGIC Telescope data Daniel Mazin and Nadia Tonello Max-Planck-Institut für Physik München D.Mazin, N.Tonello MPI for Physics, Munich.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Liquid Xenon Calorimeter Analysis R.Sawada on behalf of the MEG LXe analysis group 17/Feb/2009.
1 Energy loss correction for a crystal calorimeter He Miao Institute of High Energy Physics Beijing, P.R.China.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
Feb. 7, 2007First GLAST symposium1 Measuring the PSF and the energy resolution with the GLAST-LAT Calibration Unit Ph. Bruel on behalf of the beam test.
1 NaI calibrationneutron observation NaI calibration and neutron observation during the charge exchange experiment 1.Improving the NaI energy resolution.
2004 Fall JPS meeting (English version) K.Okada1 Measurement of prompt photon in sqrt(s)=200GeV pp collisions Kensuke Okada (RIKEN-BNL research center)
Measurement of photons via conversion pairs with PHENIX at RHIC - Torsten Dahms - Stony Brook University HotQuarks 2006 – May 18, 2006.
Progress on F  with the KLOE experiment (untagged) Federico Nguyen Università Roma TRE February 27 th 2006.
東大素粒子セ, PSI A, UCI B, ETH C 岩本敏幸 A, 内山雄祐, 大谷航, 小曽根健嗣 A, 澤田龍, 名取寛顕, 西口創, 久松康子, 三原智, 森俊則, 山田秀衛 B, M.Schneebeli C, S.Ritt A 内山 雄祐 日本物理学会2006年年次大会 @愛媛大・松山大.
JPS 2003 in Sendai Measurement of spectral function in the decay 1. Motivation ~ Muon Anomalous Magnetic Moment ~ 2. Event selection 3. mass.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
1 Constraining ME Flux Using ν + e Elastic Scattering Wenting Tan Hampton University Jaewon Park University of Rochester.
PMT Calibration R.Sawada 7/Jan/2007. Time calibration Method was talked at the previous meeting. The problems which was shown before were because I used.
Search for High-Mass Resonances in e + e - Jia Liu Madelyne Greene, Lana Muniz, Jane Nachtman Goal for the summer Searching for new particle Z’ --- a massive.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
Régis Lefèvre (LPC Clermont-Ferrand - France)ATLAS Physics Workshop - Lund - September 2001 In situ jet energy calibration General considerations The different.
Comparison of MC and data Abelardo Moralejo Padova.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Belle General meeting Measurement of spectral function in the decay 1. Motivation 2. Event selection 3. mass spectrum (unfolding) 4. Evaluation.
Feb. 3, 2007IFC meeting1 Beam test report Ph. Bruel on behalf of the beam test working group Gamma-ray Large Area Space Telescope.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Paolo Massarotti Kaon meeting March 2007  ±  X    X  Time measurement use neutral vertex only in order to obtain a completely independent.
Photon Transport Monte Carlo September 27, 2004 Matthew Jones/Riei IshizikiPurdue University Overview Physical processes PMT and electronics response Some.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
AlCap Analysis Discussion Analysis Steps  Protons: BG, response, unfolding Question: perform alternative fast signal analysis  Muons: BG, efficiency.
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
Status of AIF analysis Daisuke Kaneko.
Panagiotis Kokkas Univ. of Ioannina
Precision Measurement of R Value in the continuum Region
Detector Configuration for Simulation (i)
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Presentation transcript:

MEG 実験 背景ガンマ線の研究 澤田 龍 MEG コラボーレーション 東京大学素粒子物理国際研究センター 2010 年 9 月 11 日 日本物理学会 2010 年秋季大会 九州工業大学戸畑キャンパス

2 Outline Introduction Pileup Pileup identification Pileup elimination Cosmic ray Cosmic ray rejection Background components Summary

Introduction

4 Background SignalPrompt Background Accidental Background R acc ∝ (R μ ) 2 * (ΔΘ) 2 * (ΔE γ ) 2 * ΔT * ΔE e Gamma background (total) Single gamma (AIF + RD) Pileup (Cosmic ray) Signal energy MC This talk High energy BG events ➞ Larger effect in likelihood analysis AIF : positron annihilation in flight RD : muon radiative decay

5 Liquid Xenon Calorimeter Expanded view (Color code = PMT charge) Non-segmented detector ➔ all PMTs are used to reconstruct each single photon γ

6 Energy deposit in LXe (Example 1) Color represents time (blue -> red) γ MC

7 Energy deposit in LXe (Example 2) γ MC

8 Energy deposit in LXe (Example 2) γ MC

9 LXe pulse DRS4 MEG calorimeter WF sampled at 1.6 GHz Fast decay ➔ Good to reduce pileup All waveforms are recorded ➔ offline pileup identification Raw WF Template fit PMT pulse NaIBGOGSOLSOLXe Effective atomic number Density (g/cm 3 ) Relative light output (%) Decay time (nsec) , 22, 45

10 Energy reconstruction Required - Charge of most of PMT - Position and depth of conversion point A PMT WF 1. Weighted photon sum chargegain Q.E. correction for PMT coverage fraction (fixed) 2. Correction of - Non-uniform response in the detector - 5% difference depending on position and depth - Variation of light yield 3. Scale to energy. (Single factor) Scaling factor distribution Normal WF Filtered WF Filtered WF is used for energy; Integration time is shorter.

11 Pileup

12 How pileup gamma look Random trigger data Negative energy is due to overshoot of shaped WF *shaping is done to reduce slow component noise Most of pile up is low energy

13 ID by charge distribution Peak search in the largest faces (inner and outer) Example 1 Example 2

14 Time fitting χ 2 didi TiTi Ti’ = Ti - di / c’ c’ : speed of scintillation light in LXe Reconstruction : Fitting Ti’ distribution γ Single gamma (MC) Data

15 Thought Easiest way is rejecting all the pileup events Real signal can be pileup ! ➔ Simple rejection make inefficiency Better way is unfolding pileup gamma, but not trivial. - MEG calorimeter is non-segmented. - Light distribution is not constant - Low energy ➞ point-like - High energy ➞ shower shape is approximately constant. - Middle energy ➞ Light distribution much different event-by-event. - Position and depth of low energy photon is difficult 15% of events of MEG data sample have pileup. Case of MEG Subtract pileup energy from total energy

16 Finding pileup gamma positions Estimating energy without using PMTs around the pileup Expecting #photons of PMTs in case of no pileup Replace #photons around the pileup Doing the usual reconstruction Pileup elimination

17 Finding pileup gamma positions Estimating energy without using PMTs around the pileup Expecting #photons of PMTs in case of no pileup Replace #photons around the pileup Doing the usual reconstruction Pileup elimination Energy is estimated by fitting main gamma PMTs, without using PMTs around pileup Not used Fitting function is made from calibration 17MeV gamma data

18 Finding pileup gamma positions Estimating energy without using PMTs around the pileup Expecting #photons of PMTs in case of no pileup Replace #photons around the pileup Doing the usual reconstruction Pileup elimination PMT number Charge Measured Expectation from main gamma

19 Finding pileup gamma positions Estimating energy without using PMTs around the pileup Expecting #photons of PMTs in case of no pileup Replace #photons around the pileup Doing the usual reconstruction Pileup elimination PMT number Charge Expectation from main gamma Measured

20 Finding pileup gamma positions Estimating energy without using PMTs around the pileup Expecting #photons of PMTs in case of no pileup Replace #photons around the pileup Doing the usual reconstruction Pileup elimination Energy of pileup gamma is estimated from information of main gamma. Only a part of PMTs are replaced, and most of original information is used for reconstruction

21 Enhanced pileup elimination Pileup-elimination algorithm can subtract a part of energy (i.e. not all)from pileup Original After replacement A correction of subtraction is needed PMTs in white circles and a trapezoid are replaced. correction factor=2.5 is reasonable from calibration data

22 A check by using 55MeV calibration gamma Vertical scale is arbitrary. Background condition during calibration run is much different from physics runs. Black : Pileup all rejected Blue : Only pileup events [MeV] Resolution becomes almost same [MeV] Black : Pileup all rejected Blue : Only pileup events, with enhanced pileup elimination Before elimination After elimination

23 Gamma spectrum in physics runs Pileup rejected Only pileup, pileup not eliminated Elimination [MeV] Before elimination

24 Check of the Gamma spectrum in physics runs Only pileup events after elimination All pileup rejected. signal energy Blue one is scaled for comparison Almost same shape in pileup and non-pileup events. Still investigations are needed for higher tail. Signal region After elimination

Cosmic ray

26 Cosmic ray γ Most of CR peak at 160 MeV and higher tail (Landau) ➞ Not background Low energy part around signal - Mostly reconstructed around edge. ➞ Outside of acceptance Automatically rejected. - CR enter from outer face and stop in LXe volume can be identified by unusual light distribution. Identification needed. - CR (or secondary particle) enter from inner face and stop in LXe can be accidental background Signal

27 Cosmic ray rejection 99% efficiency for signal 56 % rejection in the signal energy range Rejection of particles enter from outer face Qin / Qout Reconstructed depth [cm]

Background components Fitting gamma data with background components models

29 Model of background gamma components Single gamma (AIF+RD) MC x detector response AIF : positron annihilation in flight RD : muon radiative decay 3. Cosmic ray Trigger veto for high energy is taken into account. Different pileup due to beam tuning (red and blue) 2. Pileup Random trigger data energy is scaled to represent pileup elimination Figure is before convoluting detector response

30 Fit to data CR Gamma = AIF + RD + Pileup (This fitting is done for much wider region than physics analysis )

31 Background components Energy [GeV] Signal region CR AIF+RD All the rest Total RD+AIF (Single gamma) 93% Cosmic ray1% All the rest6% All the rest : pileup or reconstruction tail

32 Summary Gamma background of MEG Main background source is single gamma from RD or AIF Improvement of resolution must decrease background 13pSM ( 白雪 ) : 液体キセノン検出器の性能 Cosmic ray Negligible after a simple geometrical rejection Pileup Identification by space, and time methods Analysis to eliminate pileup gamma energy was developed We can use also pileup events for physics analysis Fraction would become larger when we increase beam rate. * Large (>13MeV) and negative pileup events are discarded *

Back up

34 Excellent resolution is not required, since replaced PMTs are not so many(<100) typically. Fitting PMTs except around pileup, C : Conversion factor N : Number of photons l : distance from conversion point to PMT center n : number of electrons C is extracted from CW data for 36×96×24×846, stored in a BIG table file. uvw PMT 300 MB In principle, everything (except time dependence ) must be included. (i.e. depth or position dependence, scatter, error of PMT calibration...) Estimation of energy

35 Expectation can be done opposite way of energy fitting Currently, PMTs in a fixed distance(30 cm) from the pileup are replaced. We could do some study to change it event-by-event. Expecting and replacing PMT output

36 Including time information to eliminate pileup Up to now pileup-ID by time is used only to reject events In case of double-pileup, and if one of them is not identified by space, one of pileups is not eliminated but the event is used in analysis. => can make background Probability is very small. (P pileup x P not_IDed )^2 Indices of rejected PMTs in time fitting, PMT time is far from gamma time than certain threshold, is written in result folder. Modifications These PMTs are not used in energy-fitting. #photon of these PMTs are replaced by expectation from main gamma.

37 Fraction of eliminated energy We can know the fraction from CW data. Fraction W [cm] Enhancement by 2.5 is reasonable

38 Absolute background rate MC 3.7 × 10 7 μ decay/sec Detector response taken into account No pileup Uncertainty ~ 7% Data Self trigger data in 2008 Trigger threshold

39 Event selection and efficiency Event-selection No selection on conversion depth CR is rejected Large (>13 MeV) and negative pileups events are rejected for safety. Pileup event identified by time method, not by charge-distribution method are rejected. (Pileup elimination is not possible) Analysis efficiency is calculated from event-count “before” and “after” the cuts and corrected to signal efficiency known from MC In 2009 run 0.58 = 0.65 * 0.89 Experiment requirement is 0.6 % PRELIMINARY detection analysis

40 ID by sum waveform shape BG rejection ~ 1-2 % after applying other methods Signal inefficiency < 1% Because other methods, shown previous slides, work enough, this method is not used so far. Chi-square of template-fitting to sum-waveform