SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,

Slides:



Advertisements
Similar presentations
Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
Advertisements

SCILOV-10 Validation of SCIAMACHY nadir operational NO 2 product F. Azam, A. Richter, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN, Frascati, Italy.
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
1 A Temporally Consistent NO 2 data record for Ocean Color Work Wayne Robinson, Ziauddin Ahmad, Charles McClain, Ocean Biology Processing Group (OBPG)
Validation of Solar Backscatter Radiances Using Antarctic Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA.
Surface UV radiation monitoring based on GOME and SCIAMACHY Jos van Geffen 1,2, Ronald van de A 1, Michiel van Weele 1, Marc Allaart 1, Henk Eskes 1 1)
Geoscience Australia Md Anisul Islam Geoscience Australia Evaluation of IMAPP Cloud Cover Mapping Algorithm for Local application. Australian Government.
Diurnal asymmetry in the GERB(-like) fluxes: an update Cédric Bertrand Royal Meteorological Institute of Belgium, Brussels, Belgium.
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Menghua Wang NOAA/NESDIS/ORA E/RA3, Room 102, 5200 Auth Rd.
European Geosciences Union General Assembly 2006 Vienna, Austria, 02 – 07 April 2006 Paper’s objectives: 1. Contribute to the validation of MODIS aerosol.
KNMI, The Netherlands * SCIAMACHY validation workshop, Bremen, 6 Dec ‘04 Large scale validation of SCIAMACHY nadir reflectance Gijs van.
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
Reflected Solar Radiative Kernels And Applications Zhonghai Jin Constantine Loukachine Bruce Wielicki Xu Liu SSAI, Inc. / NASA Langley research Center.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
Direct aerosol radiative forcing based on combined A-Train observations – challenges in deriving all-sky estimates Jens Redemann, Y. Shinozuka, M.Kacenelenbogen,
GOME-2 Polarisation Study — Final Presentation L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI EUMETSAT, Darmstadt,
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
SCILOV10 FP Meeting SCIAMACHY irradiance validation SCILOV10 FP, Frascati, 26/27 February, 2014 M. Weber and S.Noël Institute of Environmental Physics.
Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)
MERIS US Workshop, Silver Springs, 14 th July 2008 MERIS US Workshop Vicarious Calibration Methods and Results Steven Delwart.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
Occurrence of TOMS V7 Level-2 Ozone Anomalies over Cloudy Areas Xiong Liu, 1 Mike Newchurch, 1,2 and Jae Kim 1,3 1. Department of Atmospheric Science,
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
The MEaSUREs PAR Project Robert Frouin Scripps Institution of Oceanography La Jolla, CA _______________________________________ OCRT Meeting, 4-6 may 2009,
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Latest results on the comparison between OMI and ground-based data at two European sites (Rome and Villeneuve d’Ascq) Virginie Buchard, Colette Brogniez,
Page 1 ENVISAT Validation Review – Frascati – 9-13 December st Envisat Validation Workshop MERIS Conclusions and recommendations.
WP 8: Impact on Satellite Retrievals University of l’Aquila (DFUA [12]) Ecole Polytechnique (EPFL [13]) Observatory of Neuchatel (ON [14]) Partners (according.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Aerosol_cci ECV. Aerosol_cci > Thomas Holzer-Popp > ESA Living Planet Symposium, Bergen, 1 July 2010 slide 2 Major improvements over precursor AOD datasets.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
As components of the GOES-R ABI Air Quality products, a multi-channel algorithm similar to MODIS/VIIRS for NOAA’s next generation geostationary satellite.
© Imperial College LondonPage 1 Estimating the radiative effect of mineral dust over ocean The radiance to flux problem Dust retrieval quality Applying.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
Estimating PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin March 2009.
1 COST 723 WG1 Meeting 1 October 6-7, 2003 University of Bern, CH Availability of UTLS relevant SCIAMACHY data C. von.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
AGU Highlights Vijay Natraj. CO 2 Retrieval Simulation from GOSAT Thermal IR Spectra 15 um CO 2 band; 0.2 cm -1 res, ~ 300 S/N 110 layers for forward.
Validation of OMPS-LP Radiances P. K. Bhartia, Leslie Moy, Zhong Chen, Steve Taylor NASA Goddard Space Flight Center Greenbelt, Maryland, USA.
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
Analysis of satellite imagery to map burned areas in Sub-Saharan Africa CARBOAFRICA conference “Africa and Carbon Cycle: the CarboAfrica project” Accra.
Interannual Variability and Decadal Change of Solar Reflectance Spectra Zhonghai Jin Costy Loukachine Bruce Wielicki (NASA Langley research Center / SSAI,
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Height-resolved.
Interannual Variability of Solar Reflectance From Data and Model Z. Jin, C. Lukachin, B. Wielicki, and D. Young SSAI, Inc. / NASA Langley research Center.
OMI BSDF Validation Using Antarctic and Greenland Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA Outline.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Visible vicarious calibration using RTM
R. Santer and B. Berthelot Final meeting, ESRIN, Frascati, April 21, 2009 Calibration Test Sites Selection and Characterisation WP260 – Error analysis:
Fourth TEMPO Science Team Meeting
SEVIRI Solar Channel Calibration system
Spectral Band Adjustment Factor (SBAF) Tool
Vicarious calibration by liquid cloud target
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Mina Kang1, Myoung-Hwan Ahn1, Quintus Kleipool2 and Pepijn Veefkind2
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
Chris Sioris Kelly Chance
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi, R. Guzzi ESA ESRIN Frascati, 8-12 May 2006 Atmospheric Science Conference

 SCIAMACHY data Processing for Aerosol retrieval  Measured Reflectance Correction effects on AOP retrieval  Comparison with AERONET measurements  Conclusion Contents ESA ESRIN Frascati, May 2006

A S P PRE-Processing -PIXEL SELECTION on > Cloud Coverage Fraction (FRESCO SC-v3) <0.05 > SZA < 70 deg > | latitude| < 70 deg > sea OR land pixel ( no coast) DATA READING ( based on BEAT library ) > Earthshine radiance > Solar Irradiance > Geolocation > Observation Geometry > Acquisition Time WAVELENGTHS SELECTION > CRITERIA: T g ( i ) > 99.7 % and i+1 - i > 20 nm sea set: 364, 387,429, 683,754,775 nm land set: up to 683 nm MEASURED SPECTRAL selected aerosol wavelengths 500 nm AEROSOL CLASS PROCESSING AEROSOL DB >Spectral Optical Properties >Aerosol Profile DEM DB GTOPO30 ( 0.25º res.) SURFACE ALBEDO DB Spectral monthly MLER from GOME data ( 1º res.) RTM DOWNSTREAM for simulated reflectances INVERSE METHOD  2 min. by LMFM for simulated and measured spectral reflectances on AOD and aerosol class Aerosol Level-2 Product and selected pixels for AOD Comparison / Validation Comparison / ValidationPOST-Processing QUALITY CHECK Data Filtering on: >  2 values and >Discrimination Index on aerosol class VALIDATION Spatial Coincidence check on AERONET sites VISUALIZATION Data Format for: >daily/monthly map visualization LEVEL 1B DATA > from KNMI (via SDC link) > from ESA (via ftp or DVD) NADIR Observations Selection &Calibration by SciaL1C from EnviView Data downloading & calibration Level 1-C data  SCIAMACHY data Processing for Aerosol retrieval : main Phases and Tools ESA ESRIN Frascati, May 2006

 SCIAMACHY data Processing for Aerosol retrieval : Aerosol types in use ESA ESRIN Frascati, May 2006  & 

 SCIAMACHY data Processing for Aerosol retrieval : Aerosol types in use ESA ESRIN Frascati, May 2006  Derivative of aerosol TOA reflectance - in SS approx - with respect to 500 nm

 Reflectance Correction effects : linear correction for TOA Refl Tilstra et al derived spectral correction factors in the range nm by comparing SCIAMACHY spectral reflectance and DAK simulated reflectance over different surfaces Under the hypothesis of a linear relation between SCIAMACHY and MERIS reflectances, Acarreta & Stammes 2005 provided a set of correction factors at 442, 510, 665, 708, and 885 nm taking account different underlying surfaces Known SCIAMACHY underestimation for UV and VIS-NIR reflectance by about 10 to 25% and 10 to 20% R scia-corr  a ) = C sl  a )  R scia ( a ) + C off  a ) ESA ESRIN Frascati, May 2006

 Reflectance Correction effects : Spectra for clouds free pixels FRESCO ccf = 0 ESA ESRIN Frascati, May 2006 In the NIR, the adopted correction doesn’t introduce a significant variation in the TOA reflectance values, mainly over ocean. This can be due to the hypothesis of linearity assumed also in low reflectance domain (< 0.2) in SCIAMACHY - MERIS refl. comparison Sep 26, 2004

SCIAMACHY 500 nm  Reflectance Correction effects on AOP : Example of daily global retrieval September 15, 2004 September 15, 2004 ESA ESRIN Frascati, May 2006

SCIAMACHY 500 nm  Reflectance Correction effects on AOP : Example of daily global retrieval September 15, 2004 September 15, 2004 ESA ESRIN Frascati, May 2006

 Reflectance Correction effects on AOD : Example of monthly global retrieval September 2004 September 2004 ESA ESRIN Frascati, May 2006

 Reflectance Correction effects on AOD : Example of seasonal global retrieval Autumn 2004 Autumn 2004 ESA ESRIN Frascati, May 2006

ASP tendency to AOD understimation  AOD =  0.03  0.06 AOD  Comparison with AERONET measurements: 2003 and 2004 corresponding data AERONET AOD Level 2 data 9 AERONET sites Land : y=0.85 x ; r= 0.93 Ocean : y=0.24 x ; r= 0.38  HP: non-linearity effects for small TOA reflectance not considered in the correction factors derivation, introducing a systematic error, resulting in a bias mainly in the retrieval of AOD lower than 0.4 ESA ESRIN Frascati, May 2006

 Reflectance Correction effects on AOP retrieval: retrieval uncertainties C sl-max = C sl  sl ; C off-max = C off +  off C sl-min = C sl  sl ; C off-min = C off -  off ESA ESRIN Frascati, May 2006  AOD  > 0.1 in  50% and  20% aerosol type changed  AOD  > 0.2 in  10% and  5% aerosol type changed Estimates of retrieval uncertainties associated to reflectance correction factors

 Conclusion TOA reflectance correction TOA reflectance correction procedure was applied to SCIAMACHY nadir measurements to explore the possibility of obtaining reliable information on tropospheric aerosol retrieval : global map Examples of global map of AOD at 500 nm, relative to September, October, and November 2004, display the relatively low aerosol loading over oceanic regions, with AOD < 0.2, and the hot spots in AOD over land, presenting values  0.5, can be clearly identified SCIAMACHY versus AERONET SCIAMACHY versus AERONET AOD ( ) result in a good agreement (r = 0.93) in the case of significant aerosol loading over land and a very minor agreement (r = 0.38) for the retrieval over ocean. 1  uncertainty evaluated as  AOD =  0.03  0.06 AOD On the other hand significant propagated variability in the retrieved AOD Uncertainties in the reflectance correction factors lead to a significant propagated variability in the retrieved AOD of the order of  20% for AOD  1 and up to 90% for AOD  0.1Then the need to use anofficial re-calibrated version of Level 1B Applied correction encourages the adoption of SCIAMACHY sensor for aerosol retrieval and at the same time strengthens the need to use an official re-calibrated version of Level 1B data to improve the radiometric accuracy of low reflectance measurements and to increase the accuracy degree of the aerosol retrieval. ESA ESRIN Frascati, May 2006

Atmospheric Science Conference