High energy astronomy and Gamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL.

Slides:



Advertisements
Similar presentations
UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.
Advertisements

Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
A two-zone model for the production of prompt neutrinos in gamma-ray bursts Matías M. Reynoso IFIMAR-CONICET, Mar del Plata, Argentina GRACO 2, Buenos.
High-energy photon and particle emission from GRBs/SNe Xiang-Yu Wang Nanjing University, China Co-authors: Zhuo Li (Weizmann), Soebur Razzaque (PennState),
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Martin Lemoine.
Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
Multi-Messenger Astronomy with GLAST and IceCube Kyler Kuehn, UC-Irvine UCLA GLAST Workshop May 22, 2007.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
1 Evidence for UHECR Acceleration from Fermi Observations of AGNs and GRBs Chuck Dermer Space Science Division US Naval Research Laboratory, Washington,
What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
The beginning of extra-galactic neutrino astronomy: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv: arXiv:
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm GGI seminar Florence, Italy July 2, 2012 Walter Winter Universität Würzburg TexPoint.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
The origin of Cosmic Rays: New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Models of GRB GeV-TeV emission and GLAST/Swift synergy Xiang-Yu Wang Nanjing University, China Co-authors: Peter Meszaros (PennState), Zhuo Li (PKU), Hao-ning.
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
1 Upsilon production and decay to UHECR neutrinos from GRB and AGN associated with strong magnetic field International Workshop on Heavy Quarkonia 2008.
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
Dr. Karsten Berger Instituto de Astrofisica de Canarias, La Laguna, Spain.
Dermer Deciphering the Ancient Universe with GRBs, Kyoto, Japan 22 April Recent Progress in Theoretical Understanding of GRBs from Fermi LAT and.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
Astroparticle Physics (3/3)
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
IceCube’s neutrinos: What we have learned E. Waxman Weizmann Institute.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
The origin of Cosmic Rays: New developments and old puzzles
Particle acceleration and the microphysics of gamma-ray burst shocks
ultra high energy cosmic rays: theoretical aspects
Cosmic rays, γ and ν in star-forming galaxies
Predictions of Ultra - High Energy Neutrino fluxes
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

High energy astronomy and Gamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL

Outline The origin of UHECRs (>10 19 eV): Unknown Part I: UHECR-GRBs Part II: The role of astronomy

What do we know about >10 19 eV CRs? J(>10 11 GeV)~1 / 100 km 2 year 2  sr Most likely X-Galactic (R L =  /eB=40  p,20 kpc) Composition? HiRes- p, Auger- becoming heavier? (Uncertain  pp ) (An)isotropy: 2 , consistent with LSS Production rate & spectrum: protons,  2 (dQ/d  ) ~ erg/Mpc 3 yr + GZK Acceleration (expanding flow): Confinement  L>L B >10 12 (  2 /  ) (  /Z eV) 2 L sun Synch. losses   > (L 52 ) 1/10 (  t/10ms) -1/5 !! No L>10 12 L sun at d<d GZK  Transient Sources [EW 95]

UHECR sources: Suspects Constraints: - L>10 12 (  2 /  ) L sun -  2 (dQ/d  ) ~ erg/Mpc 3 yr - d(10 20 eV)<d GZK ~100Mpc !! No L>10 12 L sun at d<d GZK  Transient Sources Gamma-ray Bursts (GRBs)  L  ~ L Sun >10 12 (  2 /  ) L sun = (  / ) 2 L sun   ~ (L 52 ) 1/10 (  t/10ms) -1/5  2 (dQ/d  )  ~ erg* /Mpc 3 yr = erg/Mpc 3 yr Transient:  T  ~10s <<  T p  ~10 5 yr Active Galactic Nuclei (AGN, Steady):  ~ 10 1  L>10 14 L Sun = few brightest !! Non at d<d GZK  Invoke: * “ Dark ” (proton only) AGN * L~ L Sun,  t~1month flares (from stellar disruptions) [Blandford 76; Lovelace 76] [EW 95, Vietri 95, Milgrom & Usov 95] [EW 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

UHECR per GRB Uncertainties: Absolute E CR calibration E CR /E UHECR z=0 high-L GRB rate [Guetta et al. 2010]

GRB int./ext. shock acceleration Confinement  L>L B >10 12 (  2 /  ) (  /Z eV) 2 L sun L B ~L  ?? Internal shocks (  ~1): B~B equip, L B ~L Does not necessarily require orders of magnitude amplification

GRB int./ext. shock acceleration External (  >>1): B up ~10 -5 B equip ?? L B <<L, No UHE acceleration?? e - t(acceleration) < t(IC) X-ray AG  B > 0.2 n 0 5/8 mG >> 1  G 100MeV  B > 5 n 0 5/8 mG (0.1mG )  Upstream field generation, Possible external Consistent with theoretical considerations (Kumar & Barniol-Duran 09: No amplification? Parameter fit {  B,  e … } ignoring physics)  p Shock frame Downstream Upstream [Li & EW 06] [Li 10] [Piran &Nakar 10] [eg Keshet et al 09; Nishikawa et al. 09]

HE  Astronomy p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics E 2 dQ/dE=10 44 erg/Mpc 3 yr &   p <1: If X-G p ’ s:  Identify primaries, determine f(z) [EW & Bahcall 99; Bahcall & EW 01] [Berezinsky & Zatsepin 69]

HE experiments Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km 3 IceCube: +660/yr OM (05/06 … ) 4800 OM=1 km 3 s - Mediterranean Antares: 10 lines (Nov 07), 750 OM  0.05 km 3 Nestor: (?)  0.1 km 3 km3Net: R&D  1 km 3 UHE: Radio Air shower Aura, Ariana (in Ice) Auger (  ) ANITA (Balloon) EUSO (?) LOFAR

GRB ’ s If: Baryonic jet Background free: [EW & Bahcall 97, 99; Rachen & Meszaros 98; Guetta et al. 01; Murase & Nagataki 06]

GRB  & f p  Prompt ~1MeV synch  f p  ~   (100MeV)~1   (100MeV)~1  ~300 Prompt GeV photons    (100MeV) >300, no ’ s ?? Is   (100MeV)<<1? Challenge to prompt MeV sync production 95% of LGRB not detected by LAT For bright GRBs, non detection implies: F(>100MeV)/F(1MeV) ~1 ? [Abdo et al. 09; Greiner et al. 09; Dermer 10] [Guetta et al. 10]

GRB  ’ s Caution in inferring  min : - No exponential cutoff at   >1, rather f ~1/ - GeV & MeV emission likely originate from different radii (HE delay), (   =1)~R Internal collisions at R 0  “ residual ” R>> R 0 E(R)~1/R q with q<2/3 f ~1/ q for > (   =1,R= R 0 ) May account for: prompt optical (avoid self-abs.) prompt GeV (avoid pair prod.) GRB080916c HE delays   ~300 [Li & EW 08] [Li 10]

The current limit [Achterberg et al. 08 (The IceCube collaboration)]

TeV GRB ’ s Collapsar jet penetration, failed SN jet : TeV ’ s [Meszaros & EW 01; Razzaque et al. 03, 04; Guetta & Granot 03; Dermer & Atoyan 03 Ando & Beacom 05]

- physics & astro-physics  decay  e :  :  = 1:2:0 (Osc.)  e :  :  = 1:1:1  appearance experiment GRBs: -  timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of  ’ s (and  ’ s)  e :  :  = 1:1:1 (E>E 0 )  1:2:2  GRBs: E 0 ~10 15 eV Combining E E 0 flavor measurements may constrain CPV [Sin  13 Cos  ] [EW& Bahcall 97] [Rachen & Meszaros 98; Kashti & EW 05] [EW & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & EW 05]

Summary UHECRs Origin- an outstanding puzzle GRBs- only known sources satisfying all constraints astronomy Detectors approach required ~1Gton scale Resolve UHECR puzzle: composition, sources Resolve GRB physics open Q: Baryonic/Poynting jet, , particle acceleration [test collapsar jets, X/FUV flares] Constrain physics, LI, WEP

Composition clues HiRes 2005 Auger 2009 Protons Heavier at highest E? Or: modified  extrapolation? (s~300 TeV) [E.g. Wibig 08,09; Ulrich et al. 09 Kusenko 10]

[EW 1995; Bahcall & EW 03] [Katz & EW 09] protons, dQ/dE~(1+z) m E -  t eff. : p +  CMB  N +  Q=J/ t eff. Consistent with protons, E 2 (dQ/dE) ~ erg/Mpc 3 yr + GZK Production rate & Spectrum ct eff [Mpc] GZK (CMB) suppression log(E 2 dQ/dE) [erg/Mpc 2 yr]

Back up slides

Anisotropy 98% CL; Consistent with LSS (Correlation with low-luminosity AGN? Trace LSS) Anisotropy/Compostion connection Acceleration of Z(>>1) to E  Acceleration of p to E/Z Anisotropy of E  Stronger E/Z Anisotropy not E/Z  E~ eV Biased (  source ~  gal for  gal >  gal ) [Kashti & Waxman 08] [:Lemoine & EW 09]

AMANDA & IceCube

The Mediterranean effort ANTARES (NESTOR, NEMO)  KM3NeT

Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler M82 M81

A lower bound: Star bursts Star burst galaxies: - Star Formation Rate ~10 3 M sun /yr >> 1 M sun /yr “ normal ” (MW) - Density ~10 3 /cc >> 1/cc “ normal ” - B ~1 mG >> 1  G “ normal ” Most stars formed in (z>1.5) star bursts High density + B: CR e - ’ s lose all energy to synchrotron radiation CR p ’ s lose all energy to  production [Loeb & Waxman 06] [Quataert et al. 06]

Synchrotron radio  calibration [Loeb & Waxman 06] M82, NGC253: Hess, VERITAS 09 Fermi 09  dN/dE~1/E p, p<~2.2 Starbursts       

The eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Waxman 95, 04, Norman et al. 95]

The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV  B =(B 2 /8  nT~0.01 (B~0.01  G), B ~10kpc Prediction: p  D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

GRB Model Predictions [Miralda-Escude & Waxman 96]

Indirect detection 3,000 km 2 J(>10 11 GeV)~1 / 100 km 2 year 2  sr Ground array Fluorescence detector Auger: 3000 km 2