Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.

Slides:



Advertisements
Similar presentations
New developments of Silicon Photomultipliers (for PET systems)
Advertisements

Scintillator Tile Hadronic Calorimeter Prototype (analog or semidigital) M.Danilov ITEP(Moscow) CALICE Collaboration LCWS04, Paris.
10 March 2004Erika Garutti - KEK, Japan1 Development of an Hadronic Tile Calorimeter for TESLA New calorimeter concept for linear collider detector The.
Study of Silicon Photomultipliers Joëlle Barral, MPI, 25th June 2004.
Corfu 10/9/07 ( HTRA: ~ 100 ms -- 1μs ) - To develop the most promising technologies for HTRA - Assess relative strengths/areas of application in astronomy.
A photon-counting detector for exoplanet missions Don Figer 1, Joong Lee 1, Brandon Hanold 1, Brian Aull 2, Jim Gregory 2, Dan Schuette 2 1 Center for.
SiPM Interconnections to 3D electronics Jelena Ninkovic Max-Planck-Institute for Physics, Munich, Germany SiMPs basics Why do we need 3D interconnections.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
PID Nagoya univ1 The possibility of improving TOP counter Nagoya university Yuji Enari.
Mid-IR photon counting array using HgCdTe APDs and the Medipix2 ROIC
RAD2012, Nis, Serbia Positron Detector for radiochemistry on chip applications R. Duane, N. Vasović, P. LeCoz, N. Pavlov 1, C. Jackson 1,
Introduction on SiPM devices
Photon detection Visible or near-visible wavelengths
CHIPP Plenary Meeting, PSI, Oct Dieter Renker PAUL SCHERRER INSTITUT R&D on Photosensors.
Characterization of Silicon Photomultipliers for beam loss monitors Lee Liverpool University weekly meeting.
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
Outline: Motivation for a backside illuminated SiPM (BID-SiPM)
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Evaluation of Silicon Photomultiplier Arrays for the GlueX Barrel Calorimeter Carl Zorn Radiation Detector & Medical Imaging Group Jefferson Laboratory,
MPPC Radiation Hardness (gamma-ray & neutron) Satoru Uozumi, Kobe University for Toshinori Ikuno, Hideki Yamazaki, and all the ScECAL group Knowing radiation.
Update on Silicon Photomultipliers Yi Qiang (Hall-D) Jefferson Lab S&T Review May 10, 2011.
Detector development and physics studies in high energy physics experiments Shashikant Dugad Department of High Energy Physics Review, 3-9 Jan 2008.
Salvatore Tudisco The new generation of SPAD Single Photon Avalanche Diodes arrays I Workshop on Photon Detection - Perugia 2007 LNS LNS.
SiPM: Development and Applications
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Silicon Photomultipliers
Photodetection EDIT Internal photoelectric effect in Si Band gap (T=300K) = 1.12 eV (~1100 nm) More than 1 photoelectron can be created by light in silicon.
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group May 29 – Jun 4 DESY Introduction.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
The islands method in the image analysis of atmospheric Cherenkov Telescopes data Nadia Tonello and Keiichi Mase Max-Planck-Institut für Physik München.
Study of the MPPC for the GLD Calorimeter readout Satoru Uozumi (Shinshu University) Feb Beijing Introduction Basic performances Future.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
10 th Pisa Meeting on Advanced Detectors, Isola d’Elba, May 2006 Development of the first prototypes of Silicon Photomultiplier at ITC-irst N. Dinu, R.
28 June 2007G. Pauletta: ALCPG Tests of IRST SiPMs G. Pauletta Univ. & I.N.F.N. Udine Outline 1.IRST SiPMs : baseline characteristics 2.first application.
Experiment [1] M. Di Marco, P. Peiffer, S. Schonert, LArGe: Background suppression using liquid argon scintillation for 0νββ - decay search with enriched.
Towards a high-resolution fluorescence telescope B. Tomé (LIP) IDPASC School on Digital Counting Photosensors for Extreme Low Light Levels, Lisboa,
Silicon Photo Multipliers as readout for the NA62 CEDAR Detector Silicon Photo Multipliers as readout for the NA62 CEDAR Detector The NA62 Collaboration.
1 CPTA Center for Prospective Technologies & Aparatus ©2009 – Photonique SA (DMC) APD-Pixel Photo-Diodes for Frontier Detector Systems - GSI Darmstadt.
UV Sensitive very high PDE SiPMs with very low X-talk Razmik Mirzoyan 1, Pavel Buzhan 2, Boris Dolgoshein 2, Elena Popova 2, Masahiro Teshima 1 1- Max-Planck-Institute.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
Solid State Detectors - Physics
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
October 2002Sienna, JL. Faure, DAPNIA/SPP In 8th Topical Seminar on Innovative Particle and Radiation Detectors Jean-louis Faure CEA-DAPNIA-SPP Progress.
SiPM from ST-Microelectronics Nepomuk Otte & Hector Romo Santa Cruz Institute for Particle Physics University of California, Santa Cruz
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
1 Advanced designs of avalanche micro-pixel photodiodes (MAPD) from Zecotek Photonics Ziraddin (Zair) Sadygov On behalf of “MAPD collaboration” (JINR -
G. Zappala’ – Vienna Conference on Instrumentation 2016
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
Study and Development of the Multi-Pixel Photon Counter for the GLD Calorimeter Satoru Uozumi (Shinshu, Japan) on behalf of the GLD Calorimeter Group Oct-9.
The VSiPMT: A new Generation of Photons Detectors G. Barbarino 1,2, F. C. T. Barbato 1,2, R. de Asmundis 2, G. De Rosa 1,2, F. Di Capua 1, P. Migliozzi.
M.Teshima (MPP, U-Tokyo) M.Pimenta (LIP) T.Schweizer (MPP)
Study of Geiger Avalanche Photo Diode applications to pixel tracking detectors Barcelona Main Goal The use of std CMOS tech. APD's in Geiger mode (that.
Silicon Photomultiplier Development at GRAPES-3 K.C.Ravindran T.I.F.R, OOTY WAPP 2010 Worshop On behalf of GRAPES-3 Collaboration.
H. Miyamoto, M. Teshima, B. Dolgoshein, R. Mirzoyan, J. Ninkovic
Candidate light sensors for CTA High precision measurements of ultra-low light level detectors for CTA project: PMTs and SiPMs Matthias Kurz Max-Planck-Institute.
D. Renker, PSI G-APD Workshop GSI, PAUL SCHERRER INSTITUT Problems in the Development of Geiger- mode Avalanche Photodiodes Dieter Renker Paul Scherrer.
FARICH status E.A.Kravchenko Budker INP, Novosibirsk, Russia.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
Development of Multi-Pixel Photon Counters (1)
Introduction to the physics of the SiPM
Performance of LYSO and CeBr3 crystals readout by SiPM
Progress report on SiPM development and its applications
NUV-SiPM short technology description
FINAL YEAR PROJECT 4SSCZ
Optical Crosstalk in SiPM
Focusing Aerogel RICH with SiPM Photodetectors
(Status in) Silicon Photomultiplier developments
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München

A. Nepomuk Otte MPI für Physik2 Outline EUSO & MAGIC Why new photon detectors? Photon detector requirements The SiPM principle MEPhI and Pulsar HLL in Munich

A. Nepomuk Otte MPI für Physik3 Extreme Universe Space Observatory

A. Nepomuk Otte MPI für Physik4 Major Atmospheric Gamma Imaging Cherenkov Telescope ~ 10 km Particle shower ~ 1 o Cherenkov light ~ 120 m Gamma ray

A. Nepomuk Otte MPI für Physik5 Motivation for new Photon Sensors Photon detection efficiency (PDE) of state of the art photomultiplier tubes ≈20% A higher PDE results in a better signal to noise ratio (SNR) ≈ 80% PDE improves SNR by a factor 2…3 Same effect as increasing the MAGIC mirror from 17m diameter to 70m Both experiments can lower their energy threshold with more sensitive sensors

A. Nepomuk Otte MPI für Physik6 What is gained by a lower Threshold? access to lower γ-energies → deeper look into the universe (higher redshifts) → new sources → Egret 280 sources with 0.1m² active detector area (<10GeV) → ACT‘s 15 sources with m² active detector area (>300GeV) extend accessible energy range –overlap with existing experiments AUGER, AGASA, HIRES detailed study of GZK cutoff improved energy resolution MAGICEUSO

A. Nepomuk Otte MPI für Physik7 Photon Detector Requirements sensitive range [nm] sensor size [mm²] single photon counting dynamic range per sensor [phe] max. dark noise per pixel [1/s] rate capability per pixel [1/s] detection efficiency radiation hardness EUSO 330…4004 x 4yes >50%yes MAGIC 300…60030 x 30yes >20%no most requirements are similar large differences in sensitive range and pixel size challenging: detection efficiency

A. Nepomuk Otte MPI für Physik8 The Silicon Photomultiplier An avalanche photodiode (APD) in Geiger mode is a high efficient single photon counting device

A. Nepomuk Otte MPI für Physik9 The Silicon Photomultiplier BUT: Output signal of a single Geiger APD is independent of number of photoelectrons An avalanche photodiode (APD) in Geiger mode is a high efficient single photon counting device

A. Nepomuk Otte MPI für Physik10 The Silicon Photomultiplier An avalanche photodiode (APD) in Geiger mode is a high efficient single photon counting device BUT: Output signal of a single Geiger APD is independent of number of photoelectrons Solution: Combine an array of small Geiger APDs onto the same substrate (less then 1 photon per cell) …

A. Nepomuk Otte MPI für Physik11 MEPhI and Pulsar Enterprize 1 mm P. Buzhan et al. about 20% active area limits photon detection efficiency

A. Nepomuk Otte MPI für Physik12 Characteristics characteristics of current prototypes: geometry: 24 x 24 pixels = 576 pixels within 1mm 2 available up to 1024 pixels / mm² Operating voltage: 50 V to 58 V Gain: 10 5 up to ~ single pixel time resolution: 570 ps FWHM single pixel recovery time: 1μs dark count rate: 10 6 counts per second at room temperature

A. Nepomuk Otte MPI für Physik13 R&D Goals to improve existing MEPhI-Pulsar Prototypes P. Buzhan et al. NIM A 504 (2003) Luminescence of hot avalanche electrons gives rise to crosstalk with neighboring APD cells Gain 10 6 ) Counter measures: grooves between pixels to absorb photons reduce gain (4% Gain 10 5 ) Photon detection efficiency determined by: Intrinsic QE packing density of pixels Geiger breakdown probability transmittance of entrance window work on: reduction of dead area improve blue sensitivity optimization of entrance window

A. Nepomuk Otte MPI für Physik14 MPI Semiconductor Laboratory in Munich Different approach to increase photon detection efficiency use of back illumination principle → no dead area Si photon depleted bulk avalanche regions path of the photo electron output 50µm … 450µm Blow up of one “micro pixel”

A. Nepomuk Otte MPI für Physik15 MPI Semiconductor Laboratory in Munich Simulations are in final stage: Operating voltage of avalanche region 50V Geiger breakdown probability 60%...90% average drift time differences < 1ns drift rings p+ shallow p+ avalanche region photondrift path of a photo electron quench resistor output line deep n n bulk

A. Nepomuk Otte MPI für Physik16 Summary and Outlook We investigate the SiPM as photon detector in MAGIC and EUSO First SiPM prototypes are very promising SiPM prototypes already usable for some applications (e.g. PET, TileCal for Tesla) The development is pursued in two different ways -front MEPhI and Pulsar -back HLL in Munich A lot of R&D ahead: increase effective QE up to 70% increase UV sensitivity reduce crosstalk increase SiPM size