Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

6.1 Transistor Operation 6.2 The Junction FET
Modulation of conductive property in VO 2 nano-wires through an air gap-mediated electric field Tsubasa Sasaki (Tanaka-lab) 2013/10/30.
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFET (3) SD Lab. SOGANG Univ. BYUNGSOO KIM.
Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
Metal Oxide Semiconductor Field Effect Transistors
Carbon nanotube field effect transistors (CNT-FETs) have displayed exceptional electrical properties superior to the traditional MOSFET. Most of these.
Optical properties of (SrMnO 3 ) n /(LaMnO 3 ) 2n superlattices: an insulator-to-metal transition observed in the absence of disorder A. Perucchi.
Dynamic Phase Separation in Manganites Luis Ghivelder IF/UFRJ – Rio de Janeiro Main collaborator: Francisco Parisi CNEA – Buenos Aires.
Chapter 6 The Field Effect Transistor
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
MOS Capacitors ECE Some Classes of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor ▫ MOSFET, which will be the type that.
Tanaka Lab. Yasushi Fujiwara Three dimensional patterned MgO substrates ~ fabrication of FZO nanowire structure~
Magnetoelastic Coupling and Domain Reconstruction in La 0.7 Sr 0.3 MnO 3 Thin Films Epitaxially Grown on SrTiO 3 D. A. Mota IFIMUP and IN-Institute of.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
Qualitative Discussion of MOS Transistors. Big Picture ES220 (Electric Circuits) – R, L, C, transformer, op-amp ES230 (Electronics I) – Diodes – BJT –
ECE 342 Electronic Circuits 2. MOS Transistors
Giant magneto resistivity in Fe 3-x Zn x O 4 nanowire structures 産研 田中研 尾野 篤志.
2011/12/14 2nd term M1 colloquium Creation of huge metal-insulator domain and its electrical conduction property in VO 2 thin film on TiO 2 (001) substrate.
Chapter 5: Field Effect Transistor
Nano-scaled domain in the strongly correlated electron materials ( 強相関電子系におけるナノスケール電子相ドメイン ) Tanaka Laboratory Kenichi Kawatani First M1 colloquium.
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Lecture 7.0 Device Physics. Electronic Devices Passive Components Resistance (real #) –Conductor –Resistor –Battery Active Components Reactance (Imaginary.
ISIR Tanaka lab. Tatsuya Hori 層状鉄酸化物を用いた電子相変化デバイスの 応用に向けた研究.
Chapter 4 Field-Effect Transistors
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
DMT121 – ELECTRONIC DEVICES
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
Fabrication of (Fe,Zn) 3 O 4 -BiFeO 3 nano-pillar structure by self- assembled growth Tanaka Laboratory Takuya Sakamoto.
Field Effect Transistor. What is FET FET is abbreviation of Field Effect Transistor. This is a transistor in which current is controlled by voltage only.
11/13 Development of ferrite-based electronic-phase-change devices Tanaka lab. Tatsuya Hori.
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
Field Effect Transistors
Vanderbilt MURI meeting, June 14 th &15 th 2007 Band-To-Band Tunneling (BBT) Induced Leakage Current Enhancement in Irradiated Fully Depleted SOI Devices.
Preliminary Investigations of Ferroelectric Tunneling Junctions November 4, 2014 Department Mannhart: Solid State Quantum Electronics Max Planck Institute.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Xiaozhong Zhang, Xinyu Tan, Lihua Wu, Xin Zhang, Xili Gao, Caihua Wan National Center for Electron Microscopy (Beijing) Laboratory of Advanced Materials.
Electric field control of Metal- insulator phase transition in VO2 nano-wire channel Tsubasa Sasaki (Tanaka-lab) 2013/5/29.
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial Hiroki Okada Asida Lab. Osaka Univ.
Master Colloquium Field-effect Control of Insulator-metal Transition Property in Strongly Correlated (La,Pr,Ca)MnO 3 Film Ion Liquid (IL) LPCMO channel.
1 Semiconductor Devices  Metal-semiconductor junction  Rectifier (Schottky contact or Schottky barrier)  Ohmic contact  p – n rectifier  Zener diode.
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
Introduction to semiconductor technology. Outline –6 Junctions Metal-semiconductor junctions –6 Field effect transistors JFET and MOS transistors Ideal.
Integrated Circuit Devices
Field Effect Transistor (FET)
Farzana R. ZakiCSE 177/ EEE 1771 Lecture – 19. Farzana R. ZakiCSE 177/ EEE 1772 MOSFET Construction & operation of Depletion type MOSFET Plotting transfer.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Fatemeh (Samira) Soltani University of Victoria June 11 th
EE130/230A Discussion 10 Peng Zheng.
course Name: Semiconductors
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
Revision CHAPTER 6.
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
Search for Superconductivity with Nanodevices
Liquefying a gas by applying pressure
Lecture #15 OUTLINE Diode analysis and applications continued
Ionic liquid gating of VO2 with a hBN interfacial barrier
Liquefying a gas by applying pressure
Chapter 4 Field-Effect Transistors
Presentation transcript:

Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate Ionic liquid 1 Takuro Nakamura

2 3d transition metal oxide materials TiNiVCoCrMnFeCu Metal-Insulator transition VO 2 Ferromagnetic Fe 3 O 4,Fe 3-x Zn x O 4 Ferroelectric BaTiO 3 High temperature superconduction YBa 2 Cu 3 O 7 Various functionalities with the huge response H. Zheng et al., Science (2004). Y.J. Chang et al., Thin solid films (2005). N. Suzuki et al., small (2008). J.Z. Sun et al., Phys. Rev. Lett (1987).

Mn O La +3,Pr +3,Ca +2 3 (La, Ca) MnO /4+ Mn 3+ (d 4 ) Mn 3+ (d 4 ) egeg t 2g Mn 3+ (d 4 ) Mn 3+ (d 4 ) Mn 4+ (d 3 ) Mn 3+ (d 4 ) egeg t 2g Mn 3+ (d 4 ) Mn 3+ (d 4 ) LaMnO 3 3+ Mn 4+ (d 3 ) Mn 3+ (d 4 ) egeg t 2g Mn 3+ (d 4 ) Mn 3+ (d 4 ) Insulator Metal Manganite material : (La 1-x-y Pr y Ca x )MnO 3 (LPCMO) Major carriers : holes

4 Insulator-to-metal transition in LPCMO TCTC InsulatorMetal La Pr 0.35 Ca MnO 3 film External field (T, H, V G ) R I /R M ~10 4 Gigantic resistance change should be controlled by V G.

Field effect transistor (FET) Gate Source Drain Substrate Gate insulator Insulator insulator Gate control of the number of charge carriers and resulting electronic states. VGVG Metal 5

Key component : gate insulator Q = CV C =  r  0 S/d n = Q/S =  r  0 V/d Gate Source Drain Substrate Gate insulator 6 Q : electric charge C : capacitance Gate insulator

Large n is needed for phase transition C. H. Ahn et al., Nature 424, 1018 (2003). 7

Field effect transistor Using Ionic liquid 8 Electric Double Layer Ionic liquid (molten salt) E ~ 1 MV/cm C ~ 10  F/cm 2 n ~ /cm 2 N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI) Electric Double Layer Transistor (EDLT)

Typical issue for ionic liquid : electrochemical *Electrochemical carrier dope S D V G on Reversible Irreversible *Electrostatic carrier dope S D V G off S D h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ ×MOTIVATION Realizing electrostatic carrier doping in LPCMO-EDLT *Finding a suitable gate bias range for electrostatic effect *Transition property modulation using electrostatic effect Reversible/Irreversible effects depend on gate voltage. K. Ueno et al., Appl. Phys. Lett (2010). H. T. Yi et al., Sci. Rep (2014). Reversible is a key for device. 9

Pulsed laser deposition : (La Pr 0.1 Ca )MnO 3 / MgO(001) sub. T Sub. = 700 o C, P O 2 = 30 Pa in-situ annealing T Sub. = 700 o C, P O 2 = 1000 Pa Film growth MgO (001) substrate Depositing LPCMO film Depositing Au/Ni electrodes hall-bar structure Sputtering SiO 2 separator Putting ionic liquid (DEME-TFSI) EDLT Fabrication Fabrication process of LPCMO-channel EDLT 10

Fabrication process of LPCMO-channel EDLT Source Drain Gate Ionic liquid DEME-TFSI V DS = 0.1 V, gate voltage (V G ) was applied at 220 K Pulsed laser deposition : (La Pr 0.1 Ca )MnO 3 / MgO(001) sub. T Sub. = 700 o C, P O 2 = 30 Pa in-situ annealing T Sub. = 700 o C, P O 2 = 1000 Pa Film growth 20  m LPCMO film thickness : 8 nm EDLT fabrication Transport property investigation 11

V G dependent transfer characteristics Reversible or irreversible Scan rate : 9×10 -2 mV/sec Reversible/irreversible electric current change appeared depending on the gate voltage. I irreversible I total S D V G on h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ IDID S D V G off Reversible S D V G off S D V G on h+h+ h+h+ h+h+ h+h+ h+h+ h+h+ Irreversible 1 V 2 V 3 V K

Field effects induced by Electric-double-layer Electrostatic effect vs. Electrochemical effect Electrostatic effect is dominant at V G ≤ 2 V. Reversible changeIrreversible change 13

Gate control of metal-to-insulator transition Successfully control metal-to-insulator transition with electrostatic effect. TCTC Insulator Metal  and T c  at -2V  and T c  at +1V 14

Gate voltage induced carrier accumulation Mn O Major carriers are holes ; p-type La +3,Pr +3,Ca +2 zero gate bias (La Pr 0.1 Ca )MnO 3 15 h+h+ h+h+ h+h+

Gate voltage induced carrier accumulation negative gate bias Mn O h+h+ h+h+ h+h+ Negative gate bias dopes more holes into a LPCMO. La +3,Pr +3,Ca +2 Accumulated holes promote the transition. 16 h+h+

Gate voltage induced carrier accumulation Mn O La +3,Pr +3,Ca +2 Positive gate bias depletes holes in a LPCMO. Depleted hole discourages the transition. positive gate bias 17 h+h+ h+h+

Gate voltage induced carrier accumulation Mn O La +3,Pr +3,Ca +2 Positive gate bias deplete hole in a LPCMO. Depleted hole discourages the transition. positive gate bias 18 h+h+

19 Gate control of transition property Electrostatic effect realized the modulation of transition property. increase decrease hole encouragediscourage I-M transition

summary We have fabricated the LPCMO-EDLT structure and investigated the gate effect on its transport property. Transfer characteristic measurements revealed the reversible electrostatic carrier doping at below a gate voltage 2 V. We successfully control transition properties with electrostatic carrier doping effect. 20

21

Fabrication of LPCMO film Pulsed laser deposition : (La Pr 0.1 Ca )MnO 3 / MgO(001) sub. T Sub. = 700 o C, P O 2 = 30 Pa in-situ annealing T Sub. = 700 o C, P O 2 = 1000 Pa Film growth Target ArF excimer laser ( =193 nm) Substrate Heater (~1073K) Plume 22

Typical issue for EDLT K. Ueno et al., Appl. Phys. Lett (2010). J. Jeong et al., Science (2013). Reversible Irreversible 23

Phase Separation in manganite FMM COI 200nm M. Uehara et al., Nature (1999). Electronic phase separation between in COI (charge-ordered insulator) and FMM (ferromagnetic metal) in a sub-micrometer scale has been observed. Phase separation is important to decide material properties. L. Zhang et al., Science (2002). 24

A model considering phase separation to describe IMT quantitatively 22 Domain : 50×50  0 =358.3, a=3.88×10 -2, b=4.38×10 -8 c=0.118, E g =1.31×10 -4 [eV/K]  = 17 K T C = 173 K  = 17 K T C = 173 K Metal Coexist Insulator Metal Insulator Determing of  and T C 25

Gate control of phase separation -2V 0 V +1V K K 8 nm-(La Pr 0.1 Ca )MnO 3 Metal Insulator 26