Towards Polarized Antiprotons Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich Workshop on „Observables in Antiproton-Proton Interactions“

Slides:



Advertisements
Similar presentations
Mitglied der Helmholtz-Gemeinschaft PAX Status and future plan June 26, 2012 | Alexander Nass.
Advertisements

Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
Mitglied der Helmholtz-Gemeinschaft PAX Polarized Antiprotons 2nd Meeting FAIR Experiments February 25, 2009 | Hans Ströher (FZ-Jülich)
Hadron physics with GeV photons at SPring-8/LEPS II
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Measuring the Proton Spin Polarizabilities in Real Compton Scattering Philippe Martel – UMass Amherst Advisor: Rory Miskimen TUNL (Triangle Universities.
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
Status of the Experiment Polarizing antiprotons E. Steffens – University of Erlangen-Nürnberg for the PAX Collaboration
GSI P. Lenisa - Univ. Ferrara and INFN 1 PAX Polarized Antiproton Experiment PAX Collaboration Spokespersons: Paolo.
Paolo Lenisa, Kolya Nikolaev, Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich L.D.Landau Institute, Chernogolovka Future QCD Spin-physics.
Basic Measurements: What do we want to measure? Prof. Robin D. Erbacher University of California, Davis References: R. Fernow, Introduction to Experimental.
FNAL, Jan 25, 2008 Road to Polarized Antiprotons: Depolarization Studies and Spin Filtering Experiments at COSY and AD Frank Rathmann Institut für Kernphysik.
N. Doshita, Yamagata Univ.1 The COMPASS polarized target for Drell-Yan physics Drell-Yan physics Informal International Workshop on Drell-Yan physics.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Spin physics at Storage Rings
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Upgrade of the PAX H/D polarized internal target Ciullo G. University and INFN of Ferrara - Italy on behalf of the collaboration G. Ciullo Polarization.
Lecture on Targets A. Introduction scattering exp., gas target, storage ring B. Basics on Vacuum, Gas Flow etc pumps, molecular flow & tubes, T-shaped.
Polarized Antiprotons at GSI
Polarimetry of Proton Beams at RHIC A.Bazilevsky Summer Students Lectures June 17, 2010.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Polarized Proton Acceleration and Collisions Spin dynamics and Siberian Snakes Polarized proton acceleration.
1 Polarimeter for dEDM experiment G. Venanzoni Laboratori Nazionali di Frascati for the dEDM collaboration Workshop on Flavour in the era of LHC – Cern.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
Deuteron Polarimetry at COSY September 13, 2007 D.Eversheim, PSTP Some Introductory Remarks Some Experimental Details Concerning EDDA Deuteron Polarimetry.
Proton-Proton Elastic Scattering at RHIC
Spin Workshop 05, DubnaM. Contalbrigo - INFN Ferrara 1 PAX Polarized Antiproton eXperiments M. Contalbrigo INFN – Università di Ferarra.
The tensor analysing power component T 21 of the exclusive π - - meson photoproduction on deuteron in the resonance region. V.N.Stibunov 1, L.M. Barkov.
+ - Concluding remarks on the R&D for a Magic Proton Ring for e  cm. Yannis K. Semertzidis, BNL The bottom line Funding request Possible action.
Folie 1 Many exciting old ideas with antiprotons, pre LEAR Revival for FAIR / FLAIR Trap experiments active at AD/CERN pp →YY with S = ±1,
1 dr. Paolo Lenisa Università di Ferrara and INFN – ITALY on behalf of the PAX-Collaboration Perspectives for Polarized Antiprotons Polarized Antiprotons.
Mitglied der Helmholtz-Gemeinschaft Physics at COSY-Jülich December 2010 | Hans Ströher (Forschungszentrum Jülich, Univ. Cologne) Baryons´10, Osaka (Japan),
Proton Charge Form Factor Measurement E. Cisbani INFN Rome – Sanità Group and Italian National Institute of Health 113/Oct/2011E. Cisbani / Proton FF.
Frank Rathmann Forschungszentrum Jülich Spin-physics with Polarized Antiprotons.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE-Collaboration Institut für Kernphysik, Forschungszentrum.
Perspectives for Polarized Antiprotons (PAX: a brief history) Paolo Lenisa Università di Ferrara and INFN – Ferrara - ITALY P.Lenisa PAX story 1.
Perspectives for polarized antiprotons Paolo Lenisa Università di Ferrara and INFN - Italy Perspectives for Polarized Antiprotons MENU 2013 – Rome, September.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
P.F.Dalpiaz16 june Polarized Antiproton at FAIR The PAX experiment P.F.Dalpiaz P.F.DalpiazFerrara 2 workshop on the QCD structure of the nucleon.
1/30/2016Douglas E. Fields for the p+C CNI collaboration 1 Test of Small Angle Elastic Proton-Carbon Scattering as a High Energy Proton Beam Polarimeter.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
PAX experiment PAX: Polarized Antiproton Experiments 1 dr. Paolo Lenisa Università di Ferrara and INFN - ITALY ECT – Workshop: Hadronic structure of the.
Misha Nekipelov, Kolya Nikolaev*, Frank Rathmann Institut für Kernphysik, Forschungszentrum Jülich *Landau Institute, Chernogolovka, Russia Spin Filtering.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Proton Polarimetry Proton polarimeter reactions RHIC polarimeters.
PAX experiment PAX: Polarized Antiproton Experiments 1 dr. Paolo Lenisa Università di Ferrara and INFN - ITALY DIS 2005 XIII International Workshop on.
Deuteron polarimetry from 1.0 to 1.5 GeV/c Ed Stephenson, IUCF EDM discussion April 14, 2006 Based on work from: France:POMME B. Bonin et al. Nucl. Inst.
1 RHIC II – Ion Operation Wolfram Fischer RHIC II Workshop, BNL – Working Group: Equation of State 27 April 2005.
The PAX Project and HEPI TSU Contribution 06 August, GGSWBS’12, Tbilisi. Mirian Tabidze High Energy Physic Institute of TSU.
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
1 Machine issues for RHIC II Wolfram Fischer PANIC Satellite Meeting – New Frontiers at RHIC 30 October 2005.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
The First Transverse Single Spin Measurement in High Energy Polarized Proton-Nucleus Collision at the PHENIX experiment at RHIC RIKEN/RBRC Itaru Nakagawa.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
Mitglied der Helmholtz-Gemeinschaft Development of 3D Polarimeters for storage ring EDM searches JEDI Collaboration | David Chiladze (IKP, Forschungszentrum.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
10/10/2008 Mitglied der Helmholtz-Gemeinschaft First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE collaboration.
Large Booster and Collider Ring
PAX project at FAIR Marco Contalbrigo – INFN and Università di Ferrara - ITALY Tbilisi, 5 September 2006 M. Contalbrigo.
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Polarized Positrons at Jefferson Lab
A Precision Measurement of GEp/GMp with BLAST
N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)
Transverse-sea measurements at JPARC
Recent results from BLAST detector
Presentation transcript:

Towards Polarized Antiprotons Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich Workshop on „Observables in Antiproton-Proton Interactions“ Trento, July 3-7, 2006

Frank RathmannObservables in Antiproton-Proton Interactions2 Polarized Antiprotons Intense beams of polarized pbar never produced Conventional methods (ABS) not appliable Polarized pbar from antilambda decay -I< 1.5∙10 5 s -1 (P ≈ 0.35) Pbar scattering off liquid H 2 target -I< 2∙10 3 s -1 (P ≈ 0.2) Stern-Gerlach spin separation of a stored beam -untested (Walcher et al.): Use polarized electron beam Spin-filtering is the only succesfully tested technique

Frank RathmannObservables in Antiproton-Proton Interactions3 P beam polarization Q target polarization k || beam direction σ tot = σ 0 + σ  ·P·Q + σ || ·(P·k)(Q·k) transverse case:longitudinal case: For initially equally populated spin states:  (m=+½) and  (m=-½) Time dependence of P and I (removal only) Spin Filter Method

Frank RathmannObservables in Antiproton-Proton Interactions4 statistical error of a double polarization observable (A TT ) Measuring time t to achieve a certain error δ ATT ~ FOM = P 2 ·I Optimum Interaction Time (N ~ I) Optimimum time for Polarization Buildup given by maximum of FOM(t) t filter = 2·τ beam t/τ beam I/I Beam Polarization

Frank RathmannObservables in Antiproton-Proton Interactions Filter Test at TSR with protons Experimental Setup

Frank RathmannObservables in Antiproton-Proton Interactions6 Polarized Atomic Beam Source m j = +1/2 m j = -1/2 m i =-1/2 m i =+1/2 1 |1> |2> |3> |4> ee-ee-p |1> Atoms with m j =+½ focused in sextupole magnets RF transitions select HFS

Frank RathmannObservables in Antiproton-Proton Interactions Filter Test at TSR with protons Experimental Setup Results F. Rathmann. et al., PRL 71, 1379 (1993) T=23 MeV Low energy pp scattering  1 <0   tot+ <  tot- Expectation TargetBeam  

Frank RathmannObservables in Antiproton-Proton Interactions8 Two interpretations of FILTEX result 1994: Meyer and Horowitz: three distinct effects 1.Selective removal through scattering beyond θ acc =4.4 mrad (σ R  =83 mb) 2.Small angle scattering of target protons into ring acceptance (σ S  =52 mb) 3.Spin-transfer from polarized e - of H atoms to stored protons (σ E  =-70 mb) σ 1 = σ R  + σ S  + σ E  = 65 mb 2005: Milstein & Strakhovenko + Nikolaev & Pavlov: only one effect 1.Selective removal through scattering beyond θ acc =4.4 mrad (σ R  =85.6 mb) No contribution from other two effects (cancellation of scattering and transmission) σ 1 = 85.6 mb Observed polarization build-up: dP/dt = ± (1.24 ± 0.06) x h -1 P(t)=tanh(t/τ 1 ), 1/τ 1 =σ 1 Qd t f σ 1 = 72.5 ± 5.8 mb Spin-filtering works! But how? Details in Nikolaevs Talk

Frank RathmannObservables in Antiproton-Proton Interactions9 Spin-Filtering: Present Situation Spin Filtering works, but: 1.controversial interpretations of TSR result 2.no experimental data base for antiprotons  experimental tests needed with 1.Protons at COSY 2.Antiprotons at AD of CERN

Frank RathmannObservables in Antiproton-Proton Interactions10 Spin-filtering studies at COSY Objective: Understanding of spin-filtering mechanism: Disentangle electromagnetic and hadronic contributions to the polarizing cross section

Frank RathmannObservables in Antiproton-Proton Interactions11 Polarizing cross sections from the two models … only hadronic - electromagnetic + hadronic TSR A measurement of  eff to 10% precision requires polarization measurement with  P/P = 10%.

Frank RathmannObservables in Antiproton-Proton Interactions12 How to disentangle hadronic and electromagnetic contributions to  eff ? Injection of different combinations of hyperfine states Different electron and nuclear polarizations Null experiments possible: Pure electron polarized target (P z = 0), and Pure nuclear polarized target (P e =0) Inj. statesPePe PzPz InteractionHolding field |1>+1 Elm. + had.transv. + longit.weak (20 G) |1> + |4>0+1only had. longitudinalstrong (3kG) |1> + |2>+10only elm. AD Experiments require both transverse and longitudinal (weak)fields. Strong fields can be applied only longitudinally (minimal beam interference) - Snake necessary Target polarimetry requires BRP for pure electron polarization.

Frank RathmannObservables in Antiproton-Proton Interactions13 Experimental setup Low-beta section Polarized target (former HERMES target) Detector Snake Commissioning of AD setup

Frank RathmannObservables in Antiproton-Proton Interactions14  x,y new = 0.3 -> increase in density with respect to ANKE: factor 30 Lower buildup time, higher rates Larger polarization buildup rate due to higher acceptance Use of HERMES target (already in Jülich) Low beta section S.C. quadrupole development applicable to AD experiment

Frank RathmannObservables in Antiproton-Proton Interactions15 ANKE vs new IP: Acceptance and Lifetime ANKE Cross sections new-IP Lifetimes … only hadronic - electromagnetic + hadronic __ COSY average ψ acc = 1 mrad ….. ψ acc = 2 mrad

Frank RathmannObservables in Antiproton-Proton Interactions16 Figure of Merit at new IP T opt ~ 55 MeV Calculation based on Budker-Jülich

Frank RathmannObservables in Antiproton-Proton Interactions17 PITFilter. timePolar.Total rateMeas. Time (  P/P=10%) ANKE2  = 16 h1.2 %7.5x10 2 s min 5  = 42 h3.5 %5x10 s min New IP2  = 5 h16 %2.2x10 4 s -1 1 s 5  = 13 h42 %1.5x10 3 s -1 < 1 s ANKE vs new IP: Polarization New IP ANKE Polarization [%] Expectations based on Budker- Jülich for: T = 40 MeV N inj =1.5x10 10 protons

Frank RathmannObservables in Antiproton-Proton Interactions18 Present Status Low-beta section to be designed and constructed (with AD in mind) Polarized target being setup at IKP/FZJ (from HERMES) Detector Use of ANKE STT development Additional forward detector needed for AD Siberian snake for longitudinal running needed

Frank RathmannObservables in Antiproton-Proton Interactions19 Timeline Fall 2006Submission of full proposal to COSY Design and construction phase 2008Spin-filtering studies at COSY Commissioning of AD experiment 2009Installation at AD Spin-filtering studies at AD

Antiproton Polarizer Ring (APR) e-Cooler APR ABS Polarizer Target Internal Experiment Siberian Snake B Injection 150 m F. Rathmann et al., PRL 94, (2005) Extraction e-Cooler Small Beam Waist at Target β=0.2 m High Flux ABS q=1.5·10 17 s -1  Dense TargetT=100 K, longitudinal Q (300 mT) beam tubed b =ψ acc ·β·2  d t =d t (ψ acc ), l b =40 cm (=2·β) feeding tube d f =1 cm, l f =15 cm Large Acceptance APR

Frank RathmannObservables in Antiproton-Proton Interactions21 Beam lifetimes in the APR T (MeV) ψ acc (mrad) beam lilfetime τ beam (h) 10 Beam Lifetime Coulomb Loss Total Hadronic

Frank RathmannObservables in Antiproton-Proton Interactions22 Antiproton Beam Polarization (Hadronic Interaction: Longitudinal Case) Experimental Study required: Repetition of Filtex with protons at COSY Final Design of APR: Filter studies with p at AD of CERN Model D: V. Mull, K. Holinde, Phys. Rev. C 51, 2360 (1995) Model A: T. Hippchen et al., Phys. Rev. C 44, 1323 (1991) T (MeV) T (MeV) P P 2 beam lifetimes Ψ acc =10-50 mrad 3 beam lifetimes Ψ acc =20 mrad

Frank RathmannObservables in Antiproton-Proton Interactions23 A Pure Polarized Electron Target? T (MeV) σ EM|| (mb) Pure Electrons Atomic Electrons Maxiumum σ EM|| for electrons at rest: (675 mb,T opt = 6.2 MeV): Gainfactor ~15 over atomic e - in a PIT Density of an Electron-Cooler fed by 1 mA DC polarized electrons: I e =6.2·10 15 e/s A=1 cm 2 l=5 m d t = I e ·l·(β·c·A) -1 = 5.2·10 8 cm -2 Electron target density by factor ~10 6 smaller,  no match for a PIT (>10 14 cm -2 ) New calculations for smaller relative energies  Talk by Walcher

Frank RathmannObservables in Antiproton-Proton Interactions24 Conclusions Outstanding physics potential of polarized antiprotons Different proposals for polarizing antiprotons, but only one successfull experimental method (spin-filtering) Understanding of spin-filtering process still incomplete COSY will play a fundamental role in understanding the spin filtering process and in commissioning for the decisive experiment with antiprotons at AD Once hadronic buildup mechanism is verified  Filtering Studies at AD to determine σ 1 and σ 2 of pbarp scattering to optimize APR design

Frank RathmannObservables in Antiproton-Proton Interactions25 Spares

Frank RathmannObservables in Antiproton-Proton Interactions26 Detector concept Reactions: p-p elastic (COSY) p-pbar elastic (AD) Good azimuthal resolution (up/down asymmetries) Low energy recoil (<8 MeV) Silicon telescopes Thin 5μm Teflon cell needed Angular resolution for the forward particle for p-pbar AD experiment will require an openable cell

Frank RathmannObservables in Antiproton-Proton Interactions27 Models A and D Calculations by Johann Haidenbauer

Frank RathmannObservables in Antiproton-Proton Interactions28