J. KalinowskiU(1) extended SUSY Model supersymetryczny z dodatkową grupą U(1) Jan Kalinowski we współpracy z. S.Y. Choi, H.E. Haber i P.M. Zerwas hep-ph/0612218.

Slides:



Advertisements
Similar presentations
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Advertisements

Extensions of the Standard Model (part 2) Prof. Jorgen DHondt Vrije Universiteit Brussel Inter-university Institute for High Energies Content: The Higgs.
1. 2 SUPERSYMMETRY Most popular solution to the hierarchy problem. Symmetry between fermions, and bosons With same mass and quantum number 3.
Effective Operators in the MSSM Guillaume Drieu La Rochelle, LAPTH.
What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Phenomenology of new neutral.
Fermion Masses and Unification Steve King University of Southampton.
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Phenomenological Aspects of SUSY B-L Extension of the SM 1 Shaaban Khalil Centre for Theoretical Physics British University in Egypt.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Chiral freedom and the scale of weak interactions.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
Fermion Masses and Unification Steve King University of Southampton.
The Top Quark and Precision Measurements S. Dawson BNL April, 2005 M.-C. Chen, S. Dawson, and T. Krupovnikas, in preparation M.-C. Chen and S. Dawson,
4 th Generation Leptons in Minimal Walking Technicolor Theory Matti Heikinheimo University of Jyväskylä.
Fermion Masses and Unification Steve King University of Southampton.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
2-nd Vienna Central European Seminar, Nov 25-27, Rare Meson Decays in Theories Beyond the Standard Model A. Ali (DESY), A. V. Borisov, M. V. Sidorova.
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Masses For Gauge Bosons. A few basics on Lagrangians Euler-Lagrange equation then give you the equations of motion:
What is mSUGRA? Physics in Progress, seminar talk, 11 th Feb 2010 Helmut Eberl.
Fermion Masses and Unification Steve King University of Southampton.
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
Center for theoretical Physics at BUE
Distinguishing MSSM and Dirac neutralinos at the ILC Majorana (MSSM) ⇔ Dirac (MRSSM) S.Y. Choi (Chonbuk, Korea) SYC, Drees, Freitas, Zerwas, PRD76 (2008)
2. Two Higgs Doublets Model
Low scale gravity mediation in warped extra dimensions and collider phenomenology on sector hidden sector LCWS 06, March 10, Bangalore Nobuchika.
H125 & Natural Alignment in the Z3 NMSSM Nausheen R. Shah University of Michigan Aug 7, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner.
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Axion and anomalous U(1) gauge symmetry Axion and anomalous U(1) gauge symmetry in string theory in string theory Kiwoon Choi (KAIST) ASK 2011 Apr.11 –
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
NMSSM & B-meson Dileptonic Decays Jin Min Yang ITP, Beijing arXiv: Heng, Wang, Oakes, Xiong, JMY 杨 金 民杨 金 民.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Family Symmetry Solution to the SUSY Flavour and CP Problems Plan of talk: I.Family Symmetry II.Solving SUSY Flavour and CP Problems Work with and Michal.
Lecture 6 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AA.
X ± -Gauge Boson Production in Simplest Higgs Matthew Bishara University of Rochester Meeting of Division of Particles and Fields August 11, 2011  Simplest.
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
QFTHEP – A.Beylin, V.Beylin, A.Pivovarov SFU, MIPT Scenarios of Higgs bosons and Z’ manifestations in the minimal gauge extension.
The Search For Supersymmetry Liam Malone and Matthew French.
Light pseudoscalar η and a in Simplest Little Higgs model (SLHm) and Next-to-Minimal SuperSymmetric Model (NMSSM) Jubin Park LHC Physics Workshop.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di Roma, La Sapienza, INFN Z’production at LHC in an extended.
BEYOND MFV IN FAMILY SYMMETRY THEORIES OF FERMION MASSES Work done with Zygmunt Lalak and Graham Ross Based on existing ideas but, hopefully, contributing.
Family Gauge Bosons with an Inverted Mass Hierarchy Yoshio Koide (Osaka University) in collaboration with Toshifumi Yamashita (Maskawa Insititute, KSU)
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Mar. 29, 2008 LHC 研究会 Axionic Mirage Mediation Tohoku Univ. Shuntaro Nakamura Collaborated with K. Okumura and M. Yamaguchi This talk is based on arXiv:
Jun. 19, 2008SUSY 08 Axionic Mirage Mediation Tohoku Univ. Shuntaro Nakamura Collaborated with K. Okumura and M. Yamaguchi This talk is based on arXiv:
J. KalinowskiDark matter in U(1) extended SUSY1 Dark matter in the U(1) extended supersymmetric model Jan Kalinowski S.Y. Choi, H.E. Haber and P.M. Zerwas,
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
1 Aslı Sabancı University of Helsinki and Helsinki Insititute of Physics (HIP) Electric Dipole Moments in U(1)’ Models DESY Theory Workshop (Collider Phenomenology)
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
Hunting for Hierarchies in PSL 2 (7) MICHAEL JAY PEREZ PHENOMENOLOGY 2015 MAY 5, 2015 ARXIV : /
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
We have the Higgs!!! Now What?? Nausheen R. Shah Wayne State University Oct 14, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner arXiv:1510.xxxxx.
Charged Higgs boson decay in supersymmetric TeV scale seesaw model
Spontaneous Symmetry Breaking and the
PHYS 5326 – Lecture #19 Wrapping up the Higgs Mechanism
The Constrained E6SSM TexPoint fonts used in EMF.
The MESSM The Minimal Exceptional Supersymmetric Standard Model
Electric Dipole Moments in PseudoDirac Gauginos
Analysis of enhanced effects in MSSM from the GUT scale
Can new Higgs boson be Dark Matter Candidate in the Economical Model
Presentation transcript:

J. KalinowskiU(1) extended SUSY Model supersymetryczny z dodatkową grupą U(1) Jan Kalinowski we współpracy z. S.Y. Choi, H.E. Haber i P.M. Zerwas hep-ph/ Seminarium Fizyki Wysokich Energii, 30 kwietnia 2007

J. KalinowskiU(1) extended SUSY Plan seminarium Motywacja wyjścia poza MS Motywacja wyjścia poza MSSM Model z dodatkową symetrią U(1) Sektor Higgsa Sektor neutralin przykład 2x2 Trochę fenomenologii Podsumowanie

J. KalinowskiU(1) extended SUSY Motivation – origin of mass ? In the SM:  one Higgs doublet  the potential  if (why?) and (why?) then EWSB: = v = 246 GeV  4 dof => 3 massive gauge bosons M W =M Z cos  W = gv/2  one physical Higgs boson m 2 H =  v 2 /2  but  m 2 H ~   => hierarchy problem

J. KalinowskiU(1) extended SUSY MSSM medication  two Higgs doublets  the superpotential  nice feature: radiative EWSB  min. cond.    negative Higgs searches => little fine tuning In the MSSM the hierarchy is stabilised:  but why  ~ EW scale? => the  problem

J. KalinowskiU(1) extended SUSY Beyond MSSM  NMSSM: promote to vev of some scalar field S  tan  =5 Bastero-Gil, Hugonie, King, Roy, Vempati 2000 New term increases the Higgs mass - allows lighter stops reducing fine tuning  But broken Z3 symmetry => cosmological domain-wall problem

J. KalinowskiU(1) extended SUSY  Another way to avoid axion is to promote PQ to the U(1) gauge symmetry  Gauge group USSM=SU(3)xSU(2)xU Y (1) x U X (1)  New scalar S and gauge B’ superfields axion eaten-up by a massive Z’ gauge boson  new fermions are needed to cancel anomalies – assume heavy USSM = a LE subset of E 6 SSM of King, Moretti, Nevzorov hep-ph/

J. KalinowskiU(1) extended SUSY Kinetic term mixing gauge kinetic term for B and B’ l can be converted to canonical form the U(1) part of the covariant derivative => effective Q’ x charge l gaugino masses:

J. KalinowskiU(1) extended SUSY Higgs sector Two iso-doublets H u, H d and one scalar S l After spontaneous EW + U(1) X symmetry breaking by the doublet higgsino mass and higgsino-singlino mass terms are generated l physical Higgs bosons: three neutral scalars two charged one neutral pseudoscalar

J. KalinowskiU(1) extended SUSY Higgs sector hep-ph/ , hep-ph/ The USSM Higgs h 1 mass bound l NMSSM USSM

J. KalinowskiU(1) extended SUSY Neutralino sector In thebasis, the neutralino mass matrix: where and Higgs U(1) x charges

J. KalinowskiU(1) extended SUSY Diagonalizing M 6 For small mixing between and - diagonalize first 4x4 and 2x2 blocks - perform block-diagonalization where - eigenvalues only shifted

J. KalinowskiU(1) extended SUSY How to solve for neutralino masses The neutralino mass term in the Lagrangian Original fields Physical fields where we require Mathematically this is the Takagi diagonalization of a general complex symmetric matrix (singular value decomposition)

J. KalinowskiU(1) extended SUSY Takagi diagonalization Physical masses are not eigenvalues; they are singular values and in general cannot be found by a similarity transformation. We want to solve (to simplify notation ) To compute singular values Hermitian, can be diagonalized in the standard way singular values: but U can be found this way only in some particular cases

J. KalinowskiU(1) extended SUSY Takagi diagonalization Example: Singular value 1 is doubly-degenerate But =1, i.e. does not specify U Theorem: for any complex symmetric n x n matrix there exists a unitary matrix such that with real, non-negative

J. KalinowskiU(1) extended SUSY (if = 0, up to a phase) Proof can be rewritten as Denoting k-th kolumn of U by we have Any non-degenerate => unique up to a sign Any degenerate => invariant subspace take any orthonormal set of

J. KalinowskiU(1) extended SUSY By construction Algorithm for constructing U: rewrite as can be diagonalized by an orthogonal transformation If is eigenvalue with eigenvector, then is eigenvalue with eigenvector = Therefore has equal number of positive and negative eigenvalues and even number of zero eigenvalues. 1) take eigenvectors corresponding to positive 2) for m=0, are linearly dependent Recipe for constructing U:

J. KalinowskiU(1) extended SUSY Example Consider The eigenvalues of M are degenerate and zero, and M has only one eigenvector ~ (1, i ). Thus M cannot be diagonalized by a similarity transformation. But M has two non-degenerate singular values: 0 and 2 since = Solving we find check:

J. KalinowskiU(1) extended SUSY Neutralino sector of U(1) extended SUSY In thebasis, the neutralino mass matrix: where and Higgs U(1) x charges

J. KalinowskiU(1) extended SUSY Real symmetric M 6 can always be diagonalized For small mixing between and - diagonalize first 4x4 and 2x2 blocks the diagonal elements can be of both signs - perform block-diagonalization: mixing between MSSM and new states important if

J. KalinowskiU(1) extended SUSY Illustrative example Evolution of the neutralino mass spectrum as a function of We take a scenario with At M’ 1 =0, the 4’ and 5’ states have negative eigenvalues

J. KalinowskiU(1) extended SUSY Neutralino production in e+e- l via s-channel Z, Z’ and t-,u-channel selectron Z, Z’ => mass eigenstates Z 1, Z 2 with mixing angle l Z exchange: selectron exchange:

J. KalinowskiU(1) extended SUSY Neutralino production in e+e- E cm =800 GeV in our scenario The presence of ~1 TeV Z 2 strongly affects cross sections e.g. for M 1 ’=0 although masses of are as in MSSM

J. KalinowskiU(1) extended SUSY Neutralino decays Phenomenology changes significantly: only selected examples  Cascade decays - c.f. LHC celebrated case  also possible but

J. KalinowskiU(1) extended SUSY Neutralino decays  Radiative decays - important in cross-over zones e.g. near M’ 1 =2.6 TeV 4’-5’ zone

J. KalinowskiU(1) extended SUSY Summary  USSM – a well motivated and interesting scenario  new states: scalar Higgs, Z’ and two neutralinos  Here exploratory studies of the USSM neutralino sector  neutralino sector quite complicated  in a weakly coupled regime under good theoretical control  production and decay processes analysed  phenomenology at e+e- and LHC quite different  a systematic survey needs more detailed analyses  cosmological implications => work in progress