Population Ecology Part 1

Slides:



Advertisements
Similar presentations
Population Biology.
Advertisements

Population Ecology Chapter 53.
Population Ecology Packet #80 Chapter #52.
Chapter 52 Notes Population Ecology.
Population ecology Chapter 53- AP Biology.
Chapter 51 Population Ecology.
Chapter 52 Reading Quiz A group of individuals of the same species hanging out in the same area at the same time is called a ____. A bunch of nesting penguins.
Population Ecology 1. Density and Distribution 2. Growth
Chapter 8: Population Ecology
Population Ecology Ch 52.
AP Biology Ecology population ecosystem community biosphere organism.
Population Ecology Honors Biology Life takes place in populations Population – group of individuals of same species in same area at same time  rely.
Chapter 52 Population Ecology. Population ecology is the study of the fluctuations in population size and composition and their ecological causes A population.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
I. I.Population Ecology A. A.Density and Dispersion 2. 2.Dispersion Spatial distribution of organisms a. a.Clumped/Aggregated/Patchy Patches may occur.
Population Growth Increase in population = population growth
Ch. 53 Warm-Up 1.(Review) Sketch an exponential population growth curve and a logistic population growth curve. 2.What is an ecological footprint? 3.What.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Population Ecology.
POPULATION ECOLOGY.
Population Ecology u Study of the factors that affect population size and composition.
Chapter 52 Population Ecology. Population ecology - The study of population’s and their environment. Population – a group of individuals of a single species.
Ecology 2 Population Ecology.  A population is a group of individuals of a single species living in the same general area.  They rely on the same resources.
Copyright © 2009 Benjamin Cummings is an imprint of Pearson Population Biology Concepts Population ecology Carrying capacity Reproductive strategies Survivorship.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Population ecology is the study of populations in relation to environment,
Ch 50.
Chapter 53: Population Ecology. Essential Knowledge  2.a.1 – All living systems require constant input of free energy (53.3 & 53.4).  2.d.1 – All biological.
Species Interactions & Population Control. Five Major Interactions Interspecific Competition Predation Parasitism Mutualism Commensalism.
Understanding Populations
Chapter 52: Population Ecology Population ecology Study of populations in relationship to the environment Study of populations in relationship to the environment.
POPULATION ECOLOGY. Density and Dispersion What is the density of a population? The number of individuals per unit area Dispersion is how they spread.
POPULATION ECOLOGY Chapter 53. Population = group of individuals of a single species living in same general area Density: # individuals / area Dispersion:
Population Growth December 7, 2010 Text p
Population Ecology population ecosystem community biosphere organism.
Chapter Fitty-Two Population Ecology Chuck and Metzler and Baldwin’s Little Sister.
Chapter 52: Population Ecology. Population Ecology  Study of the factors that affect population size and composition.  Population Individuals of a single.
1 Population Ecology. 2 Environmental Variation Key elements of an organism’s environment include: – temperature – water – sunlight – Soil – Classical.
Population Ecology. Population Def. a group of individuals of a __________ species living in the same area Characteristics of a popl’n 1)Size 2)Density.
Population Structure and Dynamics
Population Ecology. Populations  A population is a group of individuals of the same species that live in the same area.
Population Ecology. What is a Population? Population - A group of individuals of the same species that live together and interbreed Populations: o Share.
Ch. 53 Warm-Up (Review) Sketch an exponential population growth curve and a logistic population growth curve. What is an ecological footprint? What.
Population Ecology Chapter 52. Population - group of individuals living in same area at same time. Population density - # of individuals per unit area.
Chap 52 Population Ecology. oThe study of populations in their natural environment. oA populations environment affects the density, distribution, age.
Chapter 40 Population Ecology and Distribution of Organisms – Part 2.
POPULATION ECOLOGY CH 53 Study of the growth, abundance and distribution of populations.
Population Ecology. What is a Population? An interbreeding group of the same species living in the same general area may be distinguished by natural or.
AP Biology Population Ecology population ecosystem community biosphere organism.
© 2015 Pearson Education, Inc. POPULATION STRUCTURE AND DYNAMICS.
Population Ecology ; 36.6 Pgs Population Growth Rates Objective: I can use mathematical formulas and graphs to describe how populations.
population Number of members of a single species in a particular area.
Chapter 55 Population Ecology Environmental factors Temperature Water Sunlight Soil.
 What is the density of a population?  The number of individuals per unit area  Dispersion is how they spread out in that area  What are the three.
POPULATION ECOLOGY All of the data that can be collected about a population of species in one area.
Population Ecology Photo Credit:
Chapter 52 Population Ecology
Ecology! Sections
POPULATION ECOLOGY.
Chapter 53 Population Ecology.
Please have out: Population Notes (from Monday and Tuesday)
Chapter 53 ~ Population Ecology
Population Ecology Chapter 53.
Population Ecology Part 2
Ecology! Sections
Population Ecology Part 2
Ecology! The easy stuff .
Population Ecology!.
Population Ecology Chapter 52.
Biodiversity, Species Interactions, and Population Control
Peppy Populations Chapter 53.
Chapter 53 – Population Ecology
Presentation transcript:

Population Ecology Part 1 AP Biology Population Ecology Part 1

The human population will soon be over 7 billion people on Earth. Population Ecology This field of Biology deals with species populations and the population’s environment. A Population is the same species, same time, same place, and showing signs of reproduction. The human population will soon be over 7 billion people on Earth. We reached 7 billion as of October 2011…current figures are 7, --- --- ---,--- --- ---,--- --- ---. http://www.worldometers.info/world-population/

Population

Human Population on Earth

8 Billion (2024) According to the most recent United Nations estimates, the human population of the world is expected to reach 8 billion people in the spring of 2024. 7 Billion (2011) According to the United Nations, world population reached 7 Billion on October 31, 2011. The US Census Bureau made a lower estimate, for which the 7 billion mark was only reached on March 12, 2012.6 Billion (1999) According to the United Nations, the 6 billion figure was reached on October 12, 1999 (celebrated as the Day of 6 Billion). According to the U.S. Census Bureau instead, the six billion milestone was reached on July 22, 1999, at about 3:49 AM GMT. Yet, according to the U.S. Census web site, the date and time of when 6 billion was reached will probably change because the already uncertain estimates are constantly being updated. Previous Milestones 5 Billion: 1987 4 Billion: 1974 3 Billion: 1960 2 Billion: 1927 1 Billion: 1804 http://www.worldometers.info/world-population/

Population Ecology It mainly focuses on Density (number of organisms in a given area) and boundaries. Man made boundaries or natural boundaries exist. Dispersion –This term refers to where within the boundaries are the organisms located.

Population Density

Mark-Recapture Method Measuring Density Mark-Recapture Method N= #Captured and marked in first group x total of second group that is caught # Recaptured from first time N is the estimated population size for that defined area.

Patterns of Dispersion https://www.youtube.com/watch?v=6K128gg6Soc Clumped – This usually results from a need for nutrients, mating, or employment. (humans, elephants, fish, some species of plants, fungi) Uniform (evenly) – This usually results from territoriality or favorable environment. (snakes, nesting birds, some plants,) Random – There is no apparent reason seen in the dispersion pattern. (dandelions,

Dispersal Patterns

Demography – The study of population sizes and distribution. Growth – This occurs by birth or immigration.(to enter into a new area). Decline – This occurs by death or emigration (to exit an area). Life Tables Provides Age Specific Traits for cohorts (individuals of the same age or demographic). These are expensive and time consuming to produce. (Like the U.S. census.)

Demography Terminology Births Immigration Population size Emigration Deaths

Life Tables and Cohorts

Survivorship Curves - probability of newborn individuals surviving to a particular age Three basic types of curves can exist in nature. Type I (Many young numerous middle  few old)(type of environment?) This environment favors the young and usually indicates that the environment is favorable and these organisms are usually at the top of food chain and there seems to be extensive parental care and energy investment. Type II (Constant decline) (type of environment?) This indicates that the environment is relatively favorable but the organism may be a food source for another organism. The parental cares is modest. Type III (Many young  few middle and old (type of environment?) This indicates a harsh environment because most of the young die at an early age. This indicates that they are a food source that is low on the food chain as well as have practically no parental investment. Young are left to fend for themselves.

Figure 46.4a (Late loss) (Constant loss) (early loss)

Survivorship Curves

E. Reproductive tables 1. These tables are only concerned with females of reproductive age or possibility. These are the only real individuals who will be able to impact a population size since it is the female who provides the birth. (Low # of females indicates a threatened or dying population; High # indicates a thriving population.)

Population Ecology Part 2 AP Biology Population Ecology Part 2 21

Important concepts from previous units: Traits within cells or organisms are directly associated with inherited DNA (genes). DNA is inherited from the parents by fertilization occurring between a sperm and egg. (sexual reproduction) Positive feedback loops enhance a process that is already in action.

DNA Inherited 23

Expression of DNA to create traits 24

Life Histories A life history can tell a lot about a species’ fitness. Traits needed for survival in a particular environment can be determined. Two types of life histories can typically be seen: Semelparity (Big Bang) – Reproduce one time with huge numbers of offspring. Organism usually dies after reproducing, so it went out with a Big Bang. Tremendous amounts of time, energy, and resources invested in making numerous offspring. This type of history usually indicates a harsh environment and low survival rates. Examples: Salmon or Century Plant

Century Plant 26

Natural selection is very obvious with Semelparity…strongest survive. Iteroparity - Repeated Reproduction year after year. (Applies to most organisms usually.) This history indicates a favorable environment and good survival rates. Modest time, energy, resource investment are required. Environmental Conditions and survival rates? Environment is directly related to time, energy involved, resources available. Compromises (When, how often, how many)(Natural selection?) Natural selection is very obvious with Semelparity…strongest survive. Natural selection with Iteroparity is directly related to competition.

Population Growth Models Exponential Growth Models (Ideal Growth) Involves r-selection species. (r- think rapid growth)(A.K. A. Density – independent) There population size is related to resources not number of organisms. Produces a J curve graph. Environment has unlimited resources. (Good for ideal growth) Occurs mainly in a new environments and pioneer species such as bacteria, lichens, and mosses. (They are the first organisms to colonize the new environment.)

Population Growth Characteristics Exponential Growth-as a population gets larger, it also grows faster (J-shaped curve) (WHY?)

Elephant population 1900 1920 1940 1960 1980 Year Exponential Growth 8,000 6,000 Elephant population 4,000 2,000 1900 1920 1940 1960 1980 Year 31

This is in areas that are just formed like Hawaii was millions of year ago. (Hawaii started as barren rock, until the pioneers arrived and began to make soil. The soil enabled plants to grow. The seeds of the plants arrived in the bird dropping of birds that stopped while migrating to feed on the mosses and lichens. Larger plant roots sped up soil formation to allow for larger plants.)

Hawaii millions of years ago 33

Pioneer species begin to colonize (lichens and mosses) 34

Then over time, grasses begin to grow. 35

Then over time, shrubs will appear and they will be followed by trees. 36

Hawaii today 37

= (bN) – (dN) (birth rate – death rate) (This is equal to rN.) ∆N/∆t = B – D (Means change in population is equal to births – deaths in that time.) = (bN) – (dN) (birth rate – death rate) (This is equal to rN.) = rN ; r= b – d (if r is positive = growth greater; if r is negative = death greater) ZPG (Zero Population Growth) (r= 0) Intrinsic growth = rmax (Population is growing as fast as possible/doubling. This is seen as the curve begins to make a straight up curve.)

r=rate of increase =b-d rN-rate of increase x number in population B = bN b(per capita birth rate) N (population size) B expected number of birth expected based on the population size D=dN d(per capita death rate) D expected number of death expected based on the population size bN-dN=rN r=rate of increase =b-d rN-rate of increase x number in population Current population growth rate

Formulas related to population growth Growth rate (r) = birth rate (b) - death rate (d) # of births / total # of deaths / total Practice Problem: In research on beetles, you estimate that the populations size is 3000. Over the course of a month, you record 400 births and 150 deaths. What is the growth rate (r)? Population growth = rN (r = growth rate, N = original population size) Calculate the population growth of the beetle population.

US Population size in 2013 (N) = approximately 316 million Number of births in the US in 2013 (B) = approximately 4.1 million Number of deaths in the US in 2013 (D) = approximately 2.5 million What is the per capita birth rate ("b") for the US in 2013? b=4.1 milliin /316 mil=.013=13/1000 What is the per capita death rate ("d") for the US in 2013? d=2.5million/316 million = .008 = 8/1000

Exponential “Ideal” Growth 42

Intrinsic Growth 43

Logistic Growth Model (Realistic growth) 1. Involves K-selection species usually. (K refers to a population that is hovering around the carrying capacity “which is represented by “K”) (Density – dependent) These species numbers are about number because there are limited resources because the species is near the carrying capacity for that environment. 2. Produces an S curve graph. (snakes around the carrying capacity line) 3. Environment has limited resources; that is why organisms stay around the K. a. More organisms than K means damage will be done to the environment. b. More damage done to environment can cause K to drop even farther. This can be an example of a positive feedback loop. c. Wars, disease, and famine breakout in a population to bring numbers down below K. (Extinction is possible?  depends on damage to environment and K.)

Carrying Capacity-the number of one species an environment can support over long periods of time. (S-shaped curve

Logistic “realistic” growth 46

4. dN/dt = rN (K-N/K) K-N the number of individuals that environment can still support K-N/K the fraction of K still available for growth (As a population “N” approaches K, K-N approaches zero.) Meaning when K- N is equal to 0 you are at the carrying capacity for that environment. When K- N becomes 0, the whole equation becomes 0. Before this time, a population is experiencing exponential growth so you have r maxed.

Logistic Growth 48

5. Lag time (This accounts for the overshoot 5. Lag time (This accounts for the overshoot.) – It takes time to begin to see the effects. (So the line goes above K and this is when death, war, disease, and famine accelerate.) 6. Allee effect –This situation occurs when you have a small number of organisms. This low number causes inbreeding to occur and then this results in no variation for a gene pool and this leads to increased genetic diseases that can be lethal to accumulate in the already small population and then the population enters what is referred to as the “Extinction Vortex”. It is extremely difficult to break out of the vortex. (Like a black whole of extinction.)

Allee affect and the Extinction Vortex Small population Genetic drift Inbreeding Lower reproduction Higher mortality Loss of genetic variability Reduction in individual fitness and population adaptability Smaller population 50