* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Excited Charm and K0sK0s Resonance Production at ZEUS V. Aushev For the ZEUS Collaboration XXXIX International Symposium on Multiparticle Dynamics ''Gold.
Direct CP Asymmetries in hadronic D decays Cai-Dian Lü ( 吕才典 ) IHEP, Beijing Based on work collaborated with Hsiang-nan Li, Fu-Sheng Yu, arXiv: ,
Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
Branching Ratios of B c Meson Decaying to Vector and Axial-Vector Mesons Rohit Dhir Department of Physics, Yonsei University, Seoul, Korea. Dated:21-Sept-2012.
The role of the tetraquark at nonzero temperature Francesco Giacosa in collaboration with A. Heinz, S. Strüber, D. H. Rischke ITP, Goethe University, Frankfurt.
R Measurement at charm resonant region Haiming HU BES Collaboration Charm 2007 Cornell University Ithaca, NY. US.
1. Introduction 2.     3.  p    n 4.     5.     A   A 6. Discussion 7. Summary Bosen Workshop 2007 Review on.
Theoretical study of e+e-  PP' and the new resonance X(2175) M. Napsuciale Universidad de Guanajuato E. Oset, K. Sasaki, C. A. Vaquera Araujo, S. Gómez.
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
Understanding the QGP through Spectral Functions and Euclidean Correlators BNL April 2008 Angel Gómez Nicola Universidad Complutense Madrid IN MEDIUM LIGHT.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Ignasi Rosell Universidad CEU Cardenal Herrera 2007 Determining chiral couplings at NLO: and JHEP 0408 (2004) 042 [hep-ph/ ] JHEP 0701 (2007)
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
Precise α s from  Decays(*) M. Davier, S. Descotes-Genon, A. Hoecker, B. Malaescu, and Z. Zhang Tau08 Workshop Novosibirsk, Sept (*) arxiv: ;
Limitations of Partial Quenching Stephen Sharpe and Ruth Van de Water, University of Washington, Seattle QCD with 3 flavors (u, d, s) possesses an approximate.
1- 2 /2  1- 2 /2 u c dsb A 3 (1-  -i  ) - A 2 t d, s b b V td,V ts B Oscillations A 3 (  i  ) A 2 1 V tb c,u B decays b V ub,V cb Wolfenstein parametrization.
1 On extraction of the total photoabsorption cross section on the neutron from data on the deuteron  Motivation: GRAAL experiment (proton, deuteron) 
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
Masayasu Harada (Nagoya Univ.) based on M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003) M.H., T.Fujimori and C.Sasaki, in KIAS-Hanyang Joint.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
The phi meson in nuclear matter - recent result from theory - Talk at ECT* Workshop “New perspectives on Photons and Dileptons in Ultrarelativistic Heavy-Ion.
Scalar and pseudoscalar mesons at BESII Xiaoyan SHEN (Representing BES Collaboration) Institute of High Energy Physics, CAS, China Charm06, June 5-7, 2006,
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
PLAUSIBLE EXPLANATION FOR THE   (2000) PUZZLE HADRON 2011 XIV International Conference On Hadron Spectroscopy München, June 2011.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) Guan Yeu Chen (Taipei) DMT dynamical model.
Denis Parganlija (Frankfurt U.) Excited QCD 2010, Tatranska Lomnica/Slovakia Nature of Light Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450)
Mitchell Naisbit University of Manchester A study of the decay using the BaBar detector Mitchell Naisbit – Elba.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
XXXI Bienal de la RSEF, Granada, España, septiembre Angel Gómez Nicola Universidad Complutense Madrid COEFICIENTES DE TRANSPORTE EN UN GAS.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Hyperon Polarization in Heavy ion Collisions C. C. Barros Jr. Universidade Federal de Santa Catarina Brasil Strangeness in Quark Matter 2013 University.
Spectral sum rules and duality violations Maarten Golterman (SFSU) work with Oscar Catà and Santi Peris (BNL workshop Domain-wall fermions at 10 years)
ANALYSES OF D s * DK (B s * BK) VERTICES J. Y. Süngü, Collaborators: K. Azizi * and H. Sundu 2 nd International Conference on Particle Physics in Memoriam.
Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Ignasi Rosell Universidad CEU Cardenal Herrera IFIC, CSIC–Universitat de València Revisiting the vector form factor at NLO in 1/N C QCD10, 29th June 2010.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen.
ChPT tests at NA62 Mauro Raggi, Laboratori Nazionali di Frascati On behalf of the NA62 collaboration X Th quark confinement and hadron spectrum Tum campus,
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Nature of f 0 (1370), f 0 (1500) and f 0 (1710) within the eLSM Stanislaus Janowski in collaboration with F. Giacosa, D. Parganlija and D. H. Rischke Stanislaus.
Ignasi Rosell Universidad CEU Cardenal Herrera IFIC, CSIC–Universitat de València The Oblique S Parameter in Higgsless Electroweak Models 18.
Resonance saturation at next-to-leading order
Hadronic decays ot the t lepton:
Three-body hadronic molecules.
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Hadronic Decays of the TAU Lepton within RESONANCE CHIRAL THEORY (RcT)
Measurements of some J/ and c decays at BES
Work done in collaboration with D. Gómez-Dumm, A. Pich, J. Portolés
University of Minnesota on behalf of the CLEO Collaboration
The Operator Product Expansion Beyond Perturbation Theory in QCD
Revisiting some long-standing puzzles in charmonium decays
Improved alpha_s from Tau Decays(*)
B. El-Bennich, A. Furman, R. Kamiński, L. Leśniak, B. Loiseau
Pion transition form factor in the light front quark model
Understanding DsJ*(2317) and DsJ(2460)
The decays KS, L into four leptons
Presentation transcript:

* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias Exactas Universidad de La Plata, Argentina Hadronic  decays in resonance chiral theory

Motivation A major task in particle physics: study of QCD interactions in the low / intermediate energy regime Hadronic  decays: ideal laboratory for the study of QCD currents Intermediate energies: m  = (17) GeV Many channels: dynamics of different resonant hadron states involved Large amount of experimental data (BABAR, BELLE, CLEO...) Clean information on vector and axial-vector hadronic currents

: Factorizable interaction  τ Hadrons W Amplitude ( + EW loops )  decays into hadrons V – A hadronic current Nonperturbative QCD – What to do? Structure of the hadronic current: intermediate resonance states E.g.  

Asymptotic behaviour QCD Perturbative regime Chiral symmetry Chiral Perturbation Theory (ChPT) Resonance Chiral Theory (RChT)

Standard approach : ( e.g. KS model [J.H. Kühn, A. Santamaria, Z Phys. C 58 (1993) 445] ) “Broad” resonances  R (s) dependence needed (Ansatz based on general dynamical arguments) Everything introduced ad-hoc … Is this consistent with QCD ? Is it possible to address the problem from first principles ? General form of the hadronic tensor H μ Form factors matched with lowest order ChPT at threshold energies Peaks in the spectral functions (resonances) modelled with Breit-Wigner functions allowed Lorentz structureform factor

Resonance Chiral Theory: towards a model-independent approach  Extension of ChPT to intermediate energies  Most general Lagrangian compatible with QCD chiral symmetry  Resonances included as dynamical states  Asymptotic behaviour ruled by high energy QCD  Isospin symmetry  Expansion in 1/N C – resonances included only at tree level  Only lightest resonances taken into account  Fits to experimental data    2h   strongly dominated by well-described  and K * resonances Many hadronic  decay channels to analyze Our goal: study of    3h   processes ( 3h = , KK , , K ,  K , … )

Simplest processes:         ,       0    0   Intermediate resonances  and a 1 ( + excited states) poorly known –  (PDG) p 1 – p 2 symmetry Hadronic tensor given by only axial current allowed Goal: use our dynamical approach to determine

ChPT – O ( p 2 ) RChT + 1/N C Effective Lagrangian in RChT ... plus masses and widths of resonances (coming through resonance propagators) in terms of six parameters: couplings F V, G V, F A, ,,  linear combinations of the i ’s

QCD constraints Asymptotic behaviour of the axial two-point function Asymptotic behaviour of two-pion vector form factor Asymptotic behaviour of the  VAP  Green function (only first resonances) Free couplings remaining: F V, F A Perturbative QCD: behaviour of two-point Green functions of vector and axial-vector currents in the large Q 2 limit One gets: [ V. Cirigliano et al., Phys. Lett. B 596 (2004) 96 ] – plus resonance masses and widths

a 1 meson width : similar procedure (more involved – two loop diagrams) Off-shell resonance widths: resummations in RChT (one loop level) where One gets [ D.G.D., A. Pich, J. Portolés, Phys. Rev. D 62 (2000) ] E.g.  meson width : absorptive parts of pion loops [ D.G.D., A. Pich, J. Portolés, Phys. Rev. D 69 (2004) ] – Previous analyses with ad-hoc a 1 width

Fit to experimental data: BR and spectral function d  /dQ 2 for       From pion vector form factor : F V = GeV F A = GeV M a 1 = 1.12 GeV Fit results : PDG: M a 1 = 1.23  0.04 GeV,  a 1 = 250 to 600 MeV a 1 on-shell width (prediction):  a 1 = 480 MeV [ ALEPH: R. Barate et al., Eur. Phys. C 4 (1998) 409 ] [ D.G.D., P. Roig, A. Pich, J. Portolés, Phys. Lett. B 685 (2010) 158 ] Inclusion of the  (1450) resonance to improve the fit at large Q 2 (mixing coefficient  =  0.25)

WZW contribution + tree level diagrams with one / two vector resonances ( , , , K * )               ’         channels dominated by the vector contribution to the V – A hadronic amplitude. Form factor Other strangeness-conserving procresses:   ’     ,       Effective Lagrangian for the vector current: new couplings g i, c i, d i Total of 16 new coupling parameters – but only 10 combinations in

Explicit form of the interaction terms:

Same procedure as before allows to reduce degrees of freedom : Only two free couplings, c 3 and d 2  F V, G V from       0    0   analysis  Ten combinations of c i, d i, g i in the vector form factor  Asymptotic behaviour leads to seven constraints  Additional constraint on VPPP couplings from   3  decay width  Moreover:           differential decay width related to e + e        cross section : where [ D.G.D., P. Roig, Phys. Rev. D 86 (2012) ]

Constraints in the c 3 – d 2 plane from BR(           ) and fit to the spectral function Fits to experimental data: Predictions: e + e        low energy cross section and BR(     ’       )

       channels:      K + K        K  K 0    ,      K  0 K 0     Spectral functions given by W A : same parameters as in    Both vector and axial-vector contributions to the V – A hadronic amplitude  Threshold at Q 2 = ( 2 m K + m  ) 2 = 1.28 GeV 2 W S : negligibly small W V : tree level diagrams with one / two vector resonances ( , , , K * ) [ D.G.D., P. Roig, A. Pich, J. Portolés, Phys. Rev. D 81 (2010) ]

Asymptotic behaviour: constraints consistent with  3  ,   decays Vector form factor related with I = 1 component of e + e   K K  cross section :  Axial-vector form factor fully determined  Vector form factor in terms of couplings c 4 and g 4     K K   branching ratios e + e   K K  cross sections Present experimental information : (not trivial to disentangle the I = 1 component)

Results for c 4 =  0.05, g 4 =  0.48 Predictions: vector vs. axial-vector contributions to the spectral function Comparison with KS model (    K + K     ) Comparative results

Summary Proper low-energy behavior of form factors General Lagrangian compatible with QCD symmetries – avoids ad-hoc assumptions Asymptotic behavior of form factors ruled by QCD Consistent treatment of off-shell resonance widths We consider a theoretical description of hadronic  decays within a chiral theory that includes light vector and axial-vector resonances as dynamical states Theoretical advantages :  Agreement with experimental data for    3  ,      Predictions for V and A spectral functions of    K K     Analysis of new data expected – Further channels to be studied theoretically (  S = 1 )  Inclusion of heavier resonances would imply to lose predictivity (higher states encoded in effective couplings). Limit in the range of applicability of the approach  Difficulty in the estimation of systematic errors

Low energy expansion in   amplitude: problems with KS approach KS model not consistent with low energy QCD chiral expansion at O (p 4 ) 