Computer Networking II Course Outline - introduction -Network Layer -Wireless and Mobile Networks -Multimedia Networking -Network Management -Network Security.

Slides:



Advertisements
Similar presentations
Introduction 2 1: Introduction.
Advertisements

Chapter 1 Review Csc4220/6220 Computer Networks Instructor: Akshaye Dhawan.
CS 381 Introduction to computer networks Lecture 2 1/29/2015.
James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
CS 381 Introduction to computer networks Chapter 1 - Lecture 3 2/5/2015.
Introduction© Dr. Ayman Abdel-Hamid, CS4254 Spring CS4254 Computer Network Architecture and Programming Dr. Ayman A. Abdel-Hamid Computer Science.
Introduction1-1 Introduction to Computer Networks Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet.
Lecture 2 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
Introduction1-1 Chapter 1: Introduction  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive m.
Introduction1-1 Communication Systems Lecturer Dr. Marina Kopeetsky Lecture 1: Introduction Computer Networking: A Top Down Approach Featuring the Internet,
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
Lecture Internet Overview: roadmap 1.1 What is the Internet? (A simple overview last week) Today, A closer look at the Internet structure! 1.2 Network.
1 Day 01 - The Internet. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
1: Introduction1 Part I: Introduction Chapter goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Lecture 1 Overview: roadmap 1.1 What is computer network? the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network.
Introduction1-1 CS 325 Computer Networks Sami Rollins Fall 2005.
What’s the Internet: “nuts and bolts” view
1-1 CS 456 – Computer Networks □ Instructor: Ian Goldberg □ Classes: Tuesday and Thursday 8:30 – 9:50am MC 4063 (section.
1: Introduction1 Part I: Introduction Goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
CS 3830 Day 2 Introduction 1-1. Announcements  Program 1 posted on the course web  Project folder must be in 1DropBox on S drive by: 9/14 at 3pm  Must.
Introduction 1-1 Lecture 3 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides.
1 Computer Communication & Networks Lecture 4 Circuit Switching, Packet Switching, Delays Waleed.
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
Introduction 1-1 Chapter 1 Part 2 Network Core These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
1 Kommunikatsiooniteenuste arendus IRT0080 Loeng 7 Avo Ots telekommunikatsiooni õppetool, TTÜ raadio- ja sidetehnika inst.
Networking Networking 101 Notes are adapted from chapter-1 in the textbook Multimedia Streaming {week-2} Mohamed Abdel-Maguid Computer Networking:
Introduction1-1 Course Code:EE/TE533 Instructor: Muddathir Qamar.
CS 3214 Computer Systems Godmar Back Lecture 23. Announcements Project 5 due Dec 8 Exercise 10 handed out Exercise 11 coming before Thanksgiving CS 3214.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 1 Omar Meqdadi Department of Computer Science and Software Engineering.
Introduction 1-1 Networking Admin  1 to 4 lectures a week for 11 weeks for a total of 23 lectures  Interleaves with Functional Programming  First prac.
1 Network Core and Network Edge By Muhammad Hanif To BS IT 4 th Semester.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
CS 3830 Day 4 Introduction 1-1. Announcements  No office hour 12pm-1pm today only  Quiz on Friday  Program 1 due on Friday (put in DropBox on S drive)
EEC-484/584 Computer Networks
Ch 1. Computer Networks and the Internet Myungchul Kim
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Introduction1-1 Computer Network (  Instructor  Ai-Chun Pang 逄愛君, m Office Number: 417  Textbook.
CSE 413: Computer Network Circuit Switching and Packet Switching Networks Md. Kamrul Hasan
Chapter 1, slide: 1 Summer 2010 CS 372 Introduction to Computer Networks* Monday, June 21, 2010 School of Electrical Engineering and Computer Science Oregon.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 2 Omar Meqdadi Department of Computer Science and Software Engineering.
1: Introduction1 Internet Services and Protocols Adapted from “Computer Networking: A Top Down Approach Featuring the Internet” Kurose and Ross, Addison.
Introduction 1-1 1DT057 Distributed Information Systems Chapter 1 Introduction.
CSEN 404 Introduction to Networks Amr El Mougy Lamia AlBadrawy.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 3 Omar Meqdadi Department of Computer Science and Software Engineering.
1 Ram Dantu University of North Texas, Practical Networking.
M. R. Kharazmi Chapter 1 Data Communications and Networks Overview.
Network Processing Systems Design
CS 5565 Network Architecture and Protocols
Graciela Perera Introduction Graciela Perera
CS 3214 Computer Systems Networking.
Day 01 - The Internet.
Part 0: Networking Review
Slides taken from: Computer Networking by Kurose and Ross
Chapter 1: Introduction
CS 3214 Computer Systems Lecture 21 Godmar Back.
CS 3214 Computer Systems Networking.
CS 5565 Network Architecture and Protocols
Chapter 1: Introduction
Comp 410 AOS Packet Switching
Presentation transcript:

Computer Networking II Course Outline - introduction -Network Layer -Wireless and Mobile Networks -Multimedia Networking -Network Management -Network Security Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2009 Communications and Networking, 3rd edition, Behrouz A Forouzan, McGraw-Hill. مترجم ها : 1 - دکتر بهزاد اکبری 2 - دکتر حسین حاج رسولی ها بسم الله الرحمن الرحیم

A Communications Model  Source  generates data to be transmitted  Transmitter  Converts data into transmittable signals  Transmission System  Carries data  Receiver  Converts received signal into data  Destination  Takes incoming data

Communications Tasks Transmission system utilizationAddressing InterfacingRouting Signal generationRecovery SynchronizationMessage formatting Exchange managementSecurity Error detection and correctionNetwork management Flow control

Communications Tasks  Ways to transfer information on a link Signal format  Addressing Identify sender and receiver  Routing Find a path between sender and receiver  Buffering Compensate for differences in speed Variations in traffic load  Error detection and control If data is lost or corrupted  Congestion control To protect the network from being overloaded  Management and network operations

Signals

Sine Wave

Time and Frequency Domains

Bandwidth  Important property of a medium Difference between highest and lowest frequency that can pass through the medium Measured in Hertz [Hz] Limits the channel’s capaci

Simplified Data Communications Model

Requirements on Communication

Introduction :What’s the Internet: “nuts and bolts” view  millions of connected computing devices: hosts = end systems  running network apps  communication links  fiber, copper, radio, satellite  transmission rate = bandwidth  routers: forward packets (chunks of data) local ISP company network regional ISP router workstation server mobile

Introduction 1-12 What’s the Internet: “nuts and bolts” view  protocols control sending, receiving of msgs  e.g., TCP, IP, HTTP, FTP, PPP  Internet: “network of networks”  loosely hierarchical  public Internet versus private intranet  Internet standards  RFC: Request for comments  IETF: Internet Engineering Task Force local ISP company network regional ISP router workstation server mobile

Introduction 1-13 What’s the Internet: a service view  communication infrastructure enables distributed applications:  Web, , games, e- commerce, file sharing  communication services provided to apps:  Connectionless unreliable  connection-oriented reliable

Introduction 1-14 What’s a protocol? human protocols:  “what’s the time?”  “I have a question”  introductions … specific msgs sent … specific actions taken when msgs received, or other events network protocols:  machines rather than humans  all communication activity in Internet governed by protocols protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Introduction :A closer look at network structure:  network edge: applications and hosts  network core:  routers  network of networks  access networks, physical media: communication links

Introduction 1-16 The network edge:  end systems (hosts):  run application programs  e.g. Web,  at “edge of network”  client/server model  client host requests, receives service from always-on server  e.g. Web browser/server; client/server  peer-peer model:  minimal (or no) use of dedicated servers  e.g. Gnutella, KaZaA, Skype

Introduction 1-17 Network edge: connectionless service Goal: data transfer between end systems  same as before!  UDP - User Datagram Protocol [RFC 768]:  connectionless  unreliable data transfer  no flow control  no congestion control App’s using TCP:  HTTP (Web), FTP (file transfer), Telnet (remote login), SMTP ( ) App’s using UDP:  streaming media, teleconferencing, DNS, Internet telephony

Introduction 1-18 The Network Core  mesh of interconnected routers  the fundamental question: how is data transferred through net?  circuit switching: dedicated circuit per call: telephone net  packet-switching: data sent thru net in discrete “chunks”

Introduction 1-19 Network Core: Circuit Switching End-end resources reserved for “call”  link bandwidth, switch capacity  dedicated resources: no sharing  circuit-like (guaranteed) performance  call setup required

Introduction 1-20 Network Core: Circuit Switching network resources (e.g., bandwidth) divided into “pieces”  pieces allocated to calls  resource piece idle if not used by owning call (no sharing)  dividing link bandwidth into “pieces”  frequency division  time division

Introduction 1-21 Circuit Switching: FDM and TDM FDM frequency time TDM frequency time 4 users Example:

Introduction 1-22 Numerical example  How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?  All links are Mbps  Each link uses TDM with 24 slots/sec  500 msec to establish end-to-end circuit Let’s work it out!

Introduction 1-23 Another numerical example  How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?  All links are Mbps  Each link uses FDM with 24 channels/frequencies  500 msec to establish end-to-end circuit Let’s work it out!

Introduction 1-24 Network Core: Packet Switching each end-end data stream divided into packets  user A, B packets share network resources  each packet uses full link bandwidth  resources used as needed resource contention:  aggregate resource demand can exceed amount available  congestion: packets queue, wait for link use  store and forward: packets move one hop at a time  Node receives complete packet before forwarding Bandwidth division into “pieces” Dedicated allocation Resource reservation

Introduction 1-25 Packet Switching: Statistical Multiplexing Sequence of A & B packets does not have fixed pattern, shared on demand  statistical multiplexing. TDM: each host gets same slot in revolving TDM frame. A B C 10 Mb/s Ethernet 1.5 Mb/s D E statistical multiplexing queue of packets waiting for output link

Introduction 1-26 Packet switching versus circuit switching  1 Mb/s link  each user:  100 kb/s when “active”  active 10% of time  circuit-switching:  10 users  packet switching:  with 35 users, probability > 10 active less than.0004 Packet switching allows more users to use network! N users 1 Mbps link Q: how did we get value ?

Introduction 1-27 Packet-switching: store-and-forward  Takes L/R seconds to transmit (push out) packet of L bits on to link or R bps  Entire packet must arrive at router before it can be transmitted on next link: store and forward  delay = 3L/R (assuming zero propagation delay) Example:  L = 7.5 Mbits  R = 1.5 Mbps  delay = 15 sec R R R L more on delay shortly …

Introduction 1-28 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Delay & loss in packet-switched networks 1.6 Protocol layers, service models 1.7 History

Introduction 1-29 How do loss and delay occur? packets queue in router buffers  packet arrival rate to link exceeds output link capacity  packets queue, wait for turn A B packet being transmitted (delay) packets queueing (delay) free (available) buffers: arriving packets dropped (loss) if no free buffers

Introduction 1-30 Four sources of packet delay  1. nodal processing:  check bit errors  determine output link A B propagation transmission nodal processing queueing  2. queueing  time waiting at output link for transmission  depends on congestion level of router

Introduction 1-31 Delay in packet-switched networks 3. Transmission delay:  R=link bandwidth (bps)  L=packet length (bits)  time to send bits into link = L/R 4. Propagation delay:  d = length of physical link  s = propagation speed in medium (~2x10 8 m/sec)  propagation delay = d/s A B propagation transmission nodal processing queueing Note: s and R are very different quantities!

Introduction 1-32 Nodal delay  d proc = processing delay  typically a few microsecs or less  d queue = queuing delay  depends on congestion  d trans = transmission delay  = L/R, significant for low-speed links  d prop = propagation delay  a few microsecs to hundreds of msecs

Introduction 1-33 Queueing delay (revisited)  R=link bandwidth (bps)  L=packet length (bits)  a=average packet arrival rate traffic intensity = La/R  La/R ~ 0: average queueing delay small  La/R -> 1: delays become large  La/R > 1: more “work” arriving than can be serviced, average delay infinite!

Introduction 1-34 Packet loss  queue (aka buffer) preceding link in buffer has finite capacity  when packet arrives to full queue, packet is dropped (aka lost)  lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all

Network Models

LAYERED TASKS We use the concept of layers in our daily life. As an example, let us consider two friends who communicate through postal mail. The process of sending a letter to a friend would be complex if there were no services available from the post office. Sender, Receiver, and Carrier Hierarchy Topics discussed in this section:

TCP/IP PROTOCOL SUITE The layers in the TCP/IP protocol suite do not exactly match those in the OSI model. The original TCP/IP protocol suite was defined as having four layers: host-to- network, internet, transport, and application. However, when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite is made of five layers: physical, data link, network, transport, and application. Physical and Data Link Layers Network Layer Transport Layer Application Layer Topics discussed in this section:

TCP/IP and OSI model

ADDRESSING Four levels of addresses are used in an internet employing the TCP/IP protocols: physical, logical, port, and specific. Physical Addresses Logical Addresses Port Addresses Specific Addresses Topics discussed in this section:

Addresses in TCP/IP

Relationship of layers and addresses in TCP/IP