Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.

Slides:



Advertisements
Similar presentations
Conversion and Reactor sizing
Advertisements

ERT 316: REACTION ENGINEERING CHAPTER 2 CONVERSION & REACTOR SIZING
1 - 17/04/2015 Department of Chemical Engineering Lecture 4 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Review of previous lectures  Stoichiometry.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 3 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
CBE343 Jan 23, APPLICATION OF THE DESIGN EQUATION FOR CONTINUOUS-FLOW REACTORS X -r A [mol/m 3 ∙s]
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Today’s Lecture 1/8/08 (2) Review of Lecture 1 Solution to P1-6 Definition of Conversion, X Develop the Design Equations in Terms of X Size CSTRs and PFRs.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 4 Tuesday 1/15/08 Block 1: Mole Balances Size CSTRs and PFRs given –r A =f(X) Block 2: Rate Laws Reaction Orders Arrhenius Equation Block 3: Stoichiometry.
General Mole Balance Equation Batch
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering Asynchronous Video Series Chapter 2: Conversion and Reactors in Series H. Scott Fogler, Ph.D.
ISOTHERMAL REACTOR DESIGN
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Kjemisk reaksjonsteknikk Chemical Reaction Engineering
Kjemisk reaksjonsteknikk
1 - 12/09/2015 Department of Chemical Engineering Lecture 6 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Review of previous lectures  Pressure.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering Asynchronous Video Series Chapter 4, Part 1: Applying the Algorithm to a CSTR H. Scott Fogler, Ph.D.
L3b-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with X A :
L4-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with X A :
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 4: Reaction Stoichiometry Measures Other Than Conversion H. Scott Fogler, Ph.D.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal Reactor Design
1 - 08/12/2015 Department of Chemical Engineering Lecture 5 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Isothermal reaction design algorithm.
Chemical Reaction Engineering 1 제 2 장 Conversion and Reactor Sizing 반응공학 1.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal reactor design
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ChE 402: Chemical Reaction Engineering
ChE 402: Chemical Reaction Engineering
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ISOTHERMAL REACTOR DESIGN
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Mustafa Nasser, PhD, MSc, BSc Chemical Engineering
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 3 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Presentation transcript:

Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 2 – Tuesday 1/15/2013 Review of Lecture 1 Definition of Conversion, X Develop the Design Equations in terms of X Size CSTRs and PFRs given –rA= f(X) Conversion for Reactors in Series Review the Fall of the Tower of CRE

Reactor Mole Balances Summary Review Lecture 1 Reactor Mole Balances Summary The GMBE applied to the four major reactor types (and the general reaction AB) Reactor Differential Algebraic Integral Batch NA t CSTR PFR FA V PBR FA W

CSTR – Example Problem Given the following information, Find V Review Lecture 1 CSTR – Example Problem Given the following information, Find V Liquid phase

CSTR – Example Problem Review Lecture 1 (1) Mole Balance: (2) Rate Law: (3) Stoichiometry:

Review Lecture 1 CSTR – Example Problem (4) Combine: (5) Evaluate:

Define conversion, X Consider the generic reaction: Chose limiting reactant A as basis of calculation: Define conversion, X

Batch

Batch Integrating, The necessary t to achieve conversion X.

CSTR Consider the generic reaction: Chose limiting reactant A as basis of calculation: Define conversion, X

CSTR Steady State Well Mixed

CSTR CSTR volume necessary to achieve conversion X.

PFR Steady State

PFR PFR volume necessary to achieve conversion X. Integrating,

Reactor Mole Balances Summary in terms of conversion, X Reactor Differential Algebraic Integral CSTR PFR Batch X t PBR W

Levenspiel Plots Reactor Sizing Given –rA as a function of conversion, -rA= f(X), one can size any type of reactor. We do this by constructing a Levenspiel plot. Here we plot either (FA0/-rA) or (1/-rA) as a function of X. For (FA0/-rA) vs. X, the volume of a CSTR and the volume of a PFR can be represented as the shaded areas in the Levenspiel Plots shown as:

Levenspiel Plots

CSTR   F A - r Area = Volume of CSTR X 1

PFR

Levenspiel Plots

Numerical Evaluations of Integrals The integral to calculate the PFR volume can be evaluated using method as Simpson’s One-Third Rule: (See Appendix A.4) Other numerical methods are: Trapezoidal Rule (uses two data points) Simpson’s Three-Eight’s Rule (uses four data points) Five-Point Quadrature Formula

Reactors in Series Given: rA as a function of conversion, one can also design any sequence of reactors in series by defining X: Only valid if there are no side streams. Molar Flow rate of species A at point i:

Reactors in Series

Reactors in Series Reactor 1: V1

Reactors in Series Reactor 2: V2

Reactors in Series Reactor 3: V3

Reactors in Series

Reactors in Series Space time τ is the time necessary to process 1 reactor volume of fluid at entrance conditions.

KEEPING UP The tower of CRE, is it stable?

Reaction Engineering These topics build upon one another. Mole Balance Rate Laws Stoichiometry These topics build upon one another.

Heat Effects Isothermal Design Stoichiometry Rate Laws Mole Balance CRE Algorithm

Be careful not to cut corners on any of the Rate Laws Mole Balance Be careful not to cut corners on any of the CRE building blocks while learning this material!

Otherwise, your Algorithm becomes unstable. Isothermal Design Heat Effects Rate Laws Stoichiometry Mole Balance Otherwise, your Algorithm becomes unstable.

End of Lecture 2