Wednesday, Jan. 16, 2008PHYS 1441-002, Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #2 Wednesday, Jan. 16, 2008 Dr. Jaehoon Yu Brief history.

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education, Inc. Chapter 1 Introduction to physics Dr. Haykel Abdelhamid Elabidi website: uqu.edu.sa/staff/ar/
Advertisements

Ch. 1, Physics & Measurement
Tuesday, June 9, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #2 Tuesday, June 9, 2015 Dr. Jaehoon Yu Chapter 1 Standards.
Phys. 211 Fall Semester 2014 Dr. F. Amir. Course Overview Introductions Syllabus Class notes Homework No Cell phones.
Read Sections 1.10 and Appendix A-1 before viewing this slide show.
Physics for Scientists and Engineers
Introduction and Chapter 1
Dimensions & Unit Conversions August 10 / 11, 2015.
Tuesday, June 3, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #2 Tuesday, June 3, 2014 Dr. Jaehoon Yu Chapter 1 Standards.
Thursday, Aug. 28, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #2 Thursday, Aug. 28, 2014 Dr. Jaehoon Yu Today’s homework.
Measuring and Recording Data. developed in France in 1795 a.k.a. “SI”-International System of Units a.k.a. “SI” - International System of Units The U.S.
Quantitative Chemistry. Atomic Number Tells the number of protons and electrons the element contains.
DATA.
212 phys- Dr.S.Al Saleh Brief history of physics Standards and units Dimensional Analysis Fundamentals One Dimensional Motion: Average Velocity;
Monday, Aug. 25, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #1 Monday, Aug. 25, 2003 Dr. Jaehoon Yu 1.Who am I? 2.How.
Monday, Jan. 23, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #2 Monday, Jan. 23, 2006 Dr. Jaehoon Yu Brief history.
PHYS 1441 – Section 002 Lecture #2 Wednesday, Jan. 16, 2013 Dr. Jaehoon Yu What is Physics? Brief history of physics Chapter 1 Standards and units Estimates.
Monday, Jan. 14, 2002PHYS , Spring 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 501 Lecture #1 Monday, Jan. 14, 2002 Dr. Jaehoon Yu 1.Basic Information.
PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #2 Wednesday, August 27, 2008 Dr. Jaehoon Yu What do we want learn from this.
Wednesday, May 31, 2006 PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #2 Wednesday, May 31, 2006 Dr. Jaehoon Yu Brief history.
Measurement. Physics  A branch of science that involves the study of the physical world: energy, matter, and how they are related.
Wednesday, Sept. 1, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #2 Wednesday, Sept. 1, 2010 Dr. Jaehoon Yu Brief history.
Chapter 1 Units and Measurements
Tuesday, May 30, 2006PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #1 Tuesday, May 30, 2006 Dr. Jaehoon Yu Today’s homework.
Units and Significant Digits
Tues. May 31, 2005PHYS , Summer I 2005 Dr. Andrew Brandt 1 PHYS 1443 – Section 501 Lecture #1 Tuesday May 31, 2005 Dr. Andrew Brandt 1.Syllabus.
Monday, Jan. 26, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #2 Monday, Jan. 26, 2004 Dr. Jaehoon Yu Chapter one –Uncertainties.
Chapter 1 Units and Measurements1 Newtonian Mechanics Motion –of particles, animals, baseballs, rockets, planets galaxies, etc… Limitations –Good at all.
Ch. 1: Introduction: Physics and Measurement. Estimating.
Thursday, June 7, 2012PHYS , Summer 2012 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #2 Thursday, June 7, 2012 Dr. Jaehoon Yu Chapter 1 Standards.
Monday, Aug. 23, 2003PHYS , Fall 2004 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #1 Monday, Aug. 23, 2003 Dr. Jaehoon Yu Today’s homework.
Monday, Jan. 14, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #1 Wednesday, Sept. 4, 2002 Dr. Jaehoon Yu 1.What is Physics?
Monday, Feb. 2, 2009PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #2 Monday, Feb. 2, 2009 Dr. Jaehoon Yu What is Physics?
Wednesday, June 2, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #1 Wednesday, June 2, 2004 Dr. Jaehoon Yu Today’s homework.
DATA. There is no such thing as absolute certainty of a scientific claim. The validity of a scientific conclusion is always limited by: the experiment.
Wednesday, Aug. 29, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #2 Wednesday, Aug. 29, 2007 Dr. Jaehoon Yu Brief history.
In this chapter you will:  Use mathematical tools to measure and predict.  Apply accuracy and precision when measuring.  Display and evaluate data graphically.
Physics Section 1.2 The system of measurement used in science is the SI system. (Système International d'Unites) SI Standards Quantity Unit Symbol length.
Tuesday, May 29, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #1 Tuesday, May 29, 2007 Dr. Jaehoon Yu Today’s homework.
Tuesday, May 27, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #1 Tuesday, May 27, 2008 Dr. Jaehoon Yu Today’s homework.
Ch. 1 Introduction, Measurement, Estimating
PHYS 1441 – Section 002 Lecture #2
PHYSICS 101 (Physics for the Nonscientist)
12 Physics Lesson #1 Physics studies fundamental questions
Measurement Why are precise measurements and calculations essential to a study of physics?
Systems of Measurement
Measurements and Calculations
Why are measurements and calculations essential to a Physics study?
PHYS 1441 – Section 002 Lecture #2
Mathematics and Physics
Scientific Notation.
Lesson 1.2 Measurements in Physics
PHYS 1441 – Section 002 Lecture #2
Systems of Measurement
SCIENCE UNIT 3 THE PHYSICS OF MOTION !
DATA.
Physics and Mechanics Physics deals with the nature and properties of matter and energy. Common language is mathematics. Physics is based on experimental.
Chemistry Skills Scientific Method Graphing
Introduction to Chemistry
PHYS 1443 – Section 002 Lecture #2
Units and Significant Digits
Scientific Notation Scientists work with large and small numbers. These numbers take up to much space and are hard to put into calculators. We use shorthand.
Introduction to Chemical Principles
Ch. 1, Physics & Measurement
ACCURACY AND PRECISION
PHYS 1443 – Section 001 Lecture #2
ACCURACY AND PRECISION
Chapter 2 Analyzing Data
PHYS 1441 – Section 002 Lecture #2
Presentation transcript:

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #2 Wednesday, Jan. 16, 2008 Dr. Jaehoon Yu Brief history of physics Standards and units Uncertainties Significant Figures

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 2 Announcements Reading assignment #1: Read and follow through all sections in appendices C, D and E by Tuesday, Jan. 22 –There will be a quiz on Wednesday, Jan. 23, on this reading assignment list: 16 of you subscribed to the list so far –5 point extra credit if done by this Friday, Jan. 18 –3 point extra credit if done by Wednesday, Jan of you have registered for homework roster, of whom 8 submitted homework #1 –Remember that you need to download and submit homework #1 for full credit!! –You need a UT e-ID and password to log-in and download homework –If you don’t have them request e-id on the web No class next Monday, Jan. 21, Martin Luther King day –But homework#1 is still due 9pm that day

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 3 Why do Physics? To understand nature through experimental observations and measurements ( Research ) Establish limited number of fundamental laws, usually with mathematical expressions Predict the nature’s course ⇒ Theory and Experiment work hand-in-hand ⇒ Theory works generally under restricted conditions ⇒ Discrepancies between experimental measurements and theory are good for improvements ⇒ Improves our everyday lives, though some laws can take a while till we see them amongst us Exp. { Theory {

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 4 Models, Theories and Laws Models: An analogy or a mental image of a phenomena in terms of something we are familiar with –Often provide insights for new experiments and ideas Theories: More systematically improved version of models –Can provide quantitative predictions that are testable and more precise Laws: Certain concise but general statements about how nature behaves  The statement must be found experimentally valid Principles: Less general statements of how nature behaves –Has some level of arbitrariness

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 5 Brief History of Physics AD 18 th century: –Newton’s Classical Mechanics: A theory of mechanics based on observations and measurements AD 19 th Century: –Electricity, Magnetism and Thermodynamics Late AD 19 th and early 20 th century ( Modern Physics Era ) –Einstein’s theory of relativity: Generalized theory of space, time and energy (mechanics) –Discovery of radioactivity –Quantum Mechanics: Theory of atomic phenomena Physics has come very far, very fast and is still progressing, yet we’ve got a long way to go –What is matter made of? –How do matters get mass? –How and why do matters interact with each other? –How is universe created?

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 6 Needs for Standards and Units Three basic quantities for physical measurements –Length, Mass and Time Need a language that everyone can understand each other –Consistency is crucial for physical measurements –The same quantity measured by one must be comprehendible and reproducible by others –Practical matters contribute A system of unit called SI SI ( System Internationale ) was established in 1960 – Length – Length in meters (m)(m) – Mass – Mass in kilo-grams ( kg ) – Time – Time in seconds (s)(s)

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 7 Definition of Base Units One second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C 133 ) atom. 1 s (Time) It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium alloy kept in International Bureau of Weights and Measure in France. 1 kg (Mass) = 1000 g One meter is the length of the path traveled by light in vacuum during a time interval of 1/299,792,458 of a second. 1 m (Length) = 100 cm DefinitionsSI Units There are prefixes that scales the units larger or smaller for convenience (see pg. 7) Units for other quantities, such as Kelvins for temperature, for easiness of use

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 8 Prefixes, expressions and their meanings deci (d): centi (c): milli (m): micro (  ): nano (n): pico (p): femto (f): atto (a): zepto (z): yocto (y): deca (da): 10 1 hecto (h): 10 2 kilo (k): 10 3 mega (M): 10 6 giga (G): 10 9 tera (T): peta (P): exa (E): zetta (Z): yotta (Y): Table 1.2

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 9 International Standard Institutes International Bureau of Weights and Measure –Base unit definitions: –Unit Conversions: US National Institute of Standards and Technology (NIST)

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 10 How do we convert quantities from one unit to another? Unit 1 =Unit 2Conversion factor X 1 inch2.54cm 1 inch0.0254m 1 inch2.54x10 -5 km 1 ft30.3cm 1 ft0.303m 1 m3.281ft 1 hr60minutes 1 hr3600seconds And manyMoreHere….

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 11 Examples for Unit Conversions Ex 1: The highest waterfall in the world is Angel Falls in Venezuela, with a total drop of 979.0m. Express this drop in feet. Ex 2 : Express the speed limit 65 miles per hour (mi/h or mph) in terms of meters per second (m/s). In km/hour? What do we need to know?

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 12 Estimates & Order-of-Magnitude Calculations Estimate = Approximation –Useful for rough calculations to determine the necessity of higher precision –Usually done under certain assumptions –Might require modification of assumptions, if higher precision is necessary Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s; –Three orders of magnitude: 10 3 =1,000 –Round up for Order of magnitude estimate; 8x10 7 ~ 10 8 –Similar terms: “Ball-park-figures”, “guesstimates”, etc

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 13 Uncertainties Physical measurements have limited precision, however good they are, due to: –Number of measurements –Quality of instruments (meter stick vs micro-meter) –Experience of the person doing measurements –Etc In many cases, uncertainties are more important and difficult to estimate than the central (or mean) values Stat.{ { Syst.

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 14 Significant Figures Significant figures denote the precision of the measured value –Significant figures: non-zero numbers or zeros that are not place-holders How many significant figures? 34, 34.2, 0.001, –34 has two significant digits –34.2 has 3 –0.001 has one because the 0’s before 1 are place holders – has 5, because the 0’s after 1 indicates that the numbers in these digits are indeed 0’s. When there are many 0’s, use scientific notation: – =3.14x10 7 – =1.2x10 -4

Wednesday, Jan. 16, 2008PHYS , Spring 2008 Dr. Jaehoon Yu 15 Significant Figures Operational rules: –Addition or subtraction: Keep the smallest number of decimal place in the result, independent of the number of significant digits: = –Multiplication or Division: Keep the smallest significant figures in the result: x 3.1 =, because the smallest significant figures is ?