Sally Oey University of Michigan Cathie Clarke IoA, Cambridge HDF Smith et al. / MCELS Massive Stars: Feedback Effects in the Local Universe.

Slides:



Advertisements
Similar presentations
Turbulence, Feedback, and Slow Star Formation Mark Krumholz Princeton University Hubble Fellows Symposium, April 21, 2006 Collaborators: Rob Crockett (Princeton),
Advertisements

The Universe of Galaxies. A Brief History Galileo.
Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
9/19/2014 Claus Leitherer: Lyman Continuum Leakage 1 Lyman Continuum Leakage in the Local Universe Claus Sanch Tim Janice Sally Roderik Leitherer Borthakur.
Aging nearby spiral galaxies using H-alpha to UV flux ratios: Effect of model parameters Francesca von Braun-Bates.
Although there are regions of the galaxy M33 which show both high density neutral hydrogen gas and 24 micron emission, high density gas does not always.
Galaxies and Cosmology 5 points, vt-2007 Teacher: Göran Östlin Lecture 3.
9/7/04Claus Leitherer: A Far-UV View1 Claus Leitherer (STScI) A Far-Ultraviolet View of Starburst Galaxies Claus Leitherer (STScI)
The Complex Star Formation History of NGC 1569 L. Angeretti 1, M. Tosi 2, L. Greggio 3, E. Sabbi 1, A. Aloisi 4, C. Leitherer 4 The object The observations.
Clicker Question: The HR diagram is a plot of stellar A: mass vs diameter. B: luminosity vs temperature C: mass vs luminosity D: temperature vs diameter.
Galaxies at High Redshift and Reionization Bunker, A., Stanway, E., Ellis, R., Lacy, M., McMahon, R., Eyles, L., Stark D., Chiu, K. 2009, ASP Conference.
Building the Hertzsprung-Russell (H-R) Diagram Use the worksheets passed out in class.
Modelling Dwarf Galaxies with a Multi-Phase ISM Stefan Harfst 1,2 with: Ch. Theis 3,2 and G. Hensler 3,2 G. Hensler 3,2 1 Rochester Institute of Technology,
Stellar orbits change through interactions with inhomogeneities of gravitational potential (molecular clouds, spiral arms, bar) Resonant interactions.
Stars & Gas: Building Blocks of the Galaxy Stars as Black Body Radiators Hertzsprung-Russell diagram: Luminosity vs. Temperature Radiation over a `continuous'
Lecture 10 Metalicity Evolution Simple models for Z(  ( t ) ) (Closed Box, Accreting Box, Leaky Box) Z = - y ln(  ) = y ln( 1 /  ) “G dwarf problem”
Superbubble Driven Outflows in Cosmological Galaxy Evolution Ben Keller (McMaster University) James Wadsley, Hugh Couchman CASCA 2015 Paper: astro-ph:
Escape Fraction from Early Galaxies Elizabeth Fernandez University of Colorado, Boulder.
8th Sino-German Workshop Kunming, Feb 23-28, 2009 Milky Way vs. M31: a Tale of Two Disks Jinliang HOU In collaboration with : Ruixiang CHANG, Shiyin SHEN,
The Milky Way Appears as a band of light stretching across the sky There are dark regions along the band, giving the appearance of a lack of stars This.
El universo: Edad: 13.7 millardos de años (1 % de error) Expansión: 71 km/sec/Mpc actualmente (5 % de error) 73% = Energía oscura 23% = materia oscura.
1 II-9 Normal Galaxies and Clusters of Galaxies (Main Ref.: Lecture notes; FK 19-5, 23-1 to 3, 5, 6; Box 23-1; CD photos shown in class) (i)Stellar Population.
Evolutionary Population Synthesis models Divakara Mayya INAOEhttp:// Advanced Lectures on Galaxies (2008 INAOE): Chapter 4.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Large-Scale Winds in Starbursts and AGN David S. Rupke University of Maryland Collaborators: Sylvain Veilleux D. B. Sanders  v = km s -1 Rupke,
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
After decoupling, overdense regions collapse IF Collapse timefor all sizes. More small ripples than large waves. --> Universe dominated by globular clusters.
The Earliest Stages of Massive Star Cluster Evolution Kelsey Johnson, NRAO & U.Wisconsin The New Radio Universe, AAS 200.
Great Barriers in HMSF 2010: Gerhardt R. Meurer International Centre for Radio Astronomy Research University of Western Australia.
Introduction The formation and destruction of star cluster populations in galaxy mergers Slide 1 of 22 Star clusters in galaxy mergers – 7 April 2011 Diederik.
Star formation at intermediate scales: HII regions and Super-Star Clusters M. Sauvage, A. Contursi, L. Vanzi, S. Plante, T. X. Thuan, S. Madden.
“Nature and Descendants of Sub-mm and Lyman-break Galaxies in Lambda-CDM” Juan Esteban González Collaborators: Cedric Lacey, Carlton Baugh, Carlos Frenk,
Scaling Relations in HI Selected Star-Forming Galaxies Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
AIMS OF G ALACTIC C HEMICAL E VOLUTION STUDIES To check / constrain our understanding of stellar nucleosynthesis (i.e. stellar yields), either statistically.
The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of.
Sami Dib NBI, STARPLAN Unveiling the diversity of the MW stellar clusters + Sacha Hony (ITA/Heidelberg) Stefan Schmeja (ARI/ Heidelberg) Dimitrios Gouliermis.
Globular Cluters in Dwarf Galaxies. But first, a digression regarding tides... Leo I.
1a.Introduction 1b.PopIII stars and galaxies --> « top down » theoretical approach 2.,3a.Ly  physics and astrophysics 3.b,4.Distant/primeval galaxies:
Astronomy 404/CSI 769 Extragalactic Astronomy
Field O Stars: A Mode of Sparse Star Formation Joel Lamb Sally Oey University of Michigan.
Subaru Wide-Field Survey of M87 Globular Cluster Populations N.Arimoto (NAOJ) N.Tamura, R.Sharples (Durham) M.Onodera (Tokyo, NAOJ), K.Ohta(Kyoto) J.-C.Cuillandre.
Galactic structure and star counts Du cuihua BATC meeting, NAOC.
Feedback Observations and Simulations of Elliptical Galaxies –Daniel Wang, Shikui Tang, Yu Lu, Houjun Mo (UMASS) –Mordecai Mac-Low (AMNH) –Ryan Joung (Princeton)
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
ASTR112 The Galaxy Lecture 2 Prof. John Hearnshaw 2. Constituents of the Galaxy 3. Structure of the Galaxy 4. The system of galactic coordinates 5. Stellar.
By Soren S. Larsen (arXiv: ) Reporter: Sun Wei.
Probing the Birth of Super Star Clusters Kelsey Johnson University of Virginia Hubble Symposium, 2005.
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
VALLIA ANTONIOU IOWA STATE UNIVERSITY High Energy View of Accreting Objects: AGN and X-ray Binaries Agios Nikolaos, Crete, Greece October 2010.
Radio Galaxies part 4. Apart from the radio the thin accretion disk around the AGN produces optical, UV, X-ray radiation The optical spectrum emitted.
Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)
Nearby Galaxies: What Next? D. Calzetti (Univ. of Massachusetts) and the LEGUS Team HUBBLE2020: Hubble’s 25 th Anniversary Symposium.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Modes of Star Formation along the Hubble Sequence … and beyond Richard de Grijs University of Sheffield, UK Terschelling, 7 July 2005.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Milky Way: Galactic Structure and Dynamics Milky Way has spiral structure Galactic Bulge surrounds the Center Powerful radio source Sagittarius A at Center.
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Supernova remnants: evolution, statistics, spectra.
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
ASTR112 The Galaxy Lecture 12 Prof. John Hearnshaw 16. Evolution of the Galaxy 16.1 Star formation 16.2 Exchange of material between stars and ISM 16.3.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Gaia ITNG2013 School, Tenerife Ken Freeman, Lecture 4: the stellar halo September 2013.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
 Provocation  Introduction  Recent Initial Mass Function (IMF) work  The Star Formation Law (SFL) › Mostly a review  Pearls, feathers, and spurs.
NVO Study of Super Star Clusters in Nearby Galaxies – Proposal and Demo B. Whitmore, C. Hanley, B. Chan, R. Chandar OUTLINE Background and Science Goals.
Towards Realistic Modeling of Massive Star Clusters Oleg Gnedin (University of Michigan) graduate student Hui Li.
Presentation transcript:

Sally Oey University of Michigan Cathie Clarke IoA, Cambridge HDF Smith et al. / MCELS Massive Stars: Feedback Effects in the Local Universe

Massive Star Feedback  Radiative  Mechanical  Chemical Smith et al. / MCELS > 8 M o 3 – 40 Myr lifetimes

THE MASSIVE STAR POPULATION  N * : Clustering law, field  m : Stellar IMF Distributions: NGC 346 Nota et al. 2006

The IMF Upper-mass cutoff IC Berkeley 8610 NGC NGC NGC Tr 14 / 1682 LH 1065 LH 117 / Total 263 R136a / 30 Dor > 650 Grand Total > 913 Massey et al Massey & Hunter 1998, Hunter et al Observed OB associations ages 10 M o Arches: Figer 2002, 2005 R136a: Weidner & Kroupa 2004, Oey & Clarke 2005

m max expectation value N*N* Oey & Clarke (2005) OB + 30 Dor OB’s implies m up < 200 M o cf. Elmegreen (2000): Milky Way m up ~10,000 M o

P < P < 0.12 P < 0.02 P < 0.47 Probabilities for massuming m up Probabilities for m max assuming m up m up ~ 150 M m up ~ 150 M  Oey & Clarke 2005 see also Koen (2006) Entire sample

A Universal Clustering Law Starbursts Meurer et al Globulars and Massive young Clusters Elmegreen & Efremov 1997, Hunter et al / / Antennae Zhang & Fall 1999 HST / B. Whitmore

a Universal Clustering Law and a Universal IMF ? A steep field IMF a steepening N * A steep field IMF a steepening N * (fewer massive) (more low-N * ) (fewer massive) (more low-N * ) Massey (1995, 2002); Kroupa & Weidner (2003) All / No field / Oey, King, & Parker 2004 SMC Field stars fall on clustering law

Fraction of Field Massive Stars: 35% to 7% for N *,up = 10 to 10 6 SMC: expect ~20%, see ~26% modest dependence on total SFR Oey, King, & Parker 2004

RADIATIVE FEEDBACK Nebular emission H [S II], [O III], V, R Large Magellanic Cloud MCELS Smith et al  HII Region LF  Diffuse, warm ionized medium

1.Break in slope 2.Arm populations: shallower a Interarm populations: steeper a 3.Hubble Type correlation a ~ 1.7 Sc – Im a ~ 2.0 Sb – Sc a ~ 2.6 Sa a ~ 1.7 Sc – Im a ~ 2.0 Sb – Sc a ~ 2.6 Sa log N(L) log L HII Region Luminosity Function a Universal Clustering Law and a Universal IMF ? Oey & Clarke 1998

Ionization of the Diffuse WIM Field stars: ~ 50% WIM ionized by field ~ 50% WIM ionized by field Oey et al. 2004; Hoopes & Walterbos 2000 Leaky nebulae: LMC: up to 50% ionizing photons escape LMC: up to 50% ionizing photons escape Oey & Kennicutt 1997; Gerken, Walterbos, & Oey 2003 Ha Milky Way WHAM: Reynolds et al.

MECHANICAL FEEDBACK DEM L152 R. C. Smith & MCELS Small Magellanic Cloud Staveley-Smith et al H I H [S II], [O III] ~100 pc diameter

Superbubble size distribution + + Oey & Clarke 1997 Global Mechanical Feedback = clustering law

prediction observed Oey & Clarke 1997 Velocity distribution Oey & Clarke 1998 Predicted -3.5 Observed /- 1.4 Predicted /- 0.4 Observed /- 0.6 Size distribution

Ionizing photons escape into ISM?...into IGM? Reionization of Universe? Escape of hot gas, stellar products and ionizing photons?

Clarke & Oey 2003 The first galaxies: ? MW: LBGs: Starbursts: Ambiguous porosity e.g., Oey & Clarke 1997 Lyman cont seen? Steidel et al Critical SF Threshold Lyman cont seen in Haro 11 Bergvall et al. 2006

ESO 300-G14 NGC 7713 H a R-band SINGG: Survey of Ionization in Neutral Gas Galaxies H  survey of HIPASS galaxies Meurer et al. (2006) Oey et al. (2006, in prep) IC 5052

High SF intensity : Less WIM

Possible causes for high SFI : less WIM  Ionization source reduced: – Output from HII regions reduced – Fewer field OB stars  Starbursts occupy ISM and Remaining WIM density-bounded Ionizing photons escape

Fraction of Field Massive Stars: 35% to 7% for N *,up = 10 to 10 6 SMC: expect ~20%, see ~26% modest dependence on total SFR Oey, King, & Parker 2004 recall

Diffuse fraction vs. total SFR

Clarke & Oey 2003 MW: LBGs: Starbursts: Ambiguous porosity e.g., Oey & Clarke 1997 Lyman cont seen e.g., Steidel et al Critical SF Threshold J recall

Trend for HI-poor galaxies

 Ionization source reduced: – Output from HII regions reduced – Fewer field OB stars  Starbursts occupy ISM and Remaining WIM density-bounded Ionizing photons escape Likely ? Possible causes for high SFI : less WIM LyC seen from Haro 11 Bergvall et al. 2006

CHEMICAL FEEDBACK Q: filling factor n: generations Inhomogeneous evolution Stochastic Inhomogeneous evolution Oey 2000, 2003

data: Carney et al. (1996) Simple: Halo is evolved SIM: Halo is unevolved (Oey 2003) Thick disk MDF Thin disk MDF Thick disk MDF Bensby & Oey (2006), in prep data: Nordstrom et al. (2004) selection: Bensby et al. (2003, 2005) Halo MDF

Zero-metallicity (Pop III) stars (Oey 2003) For Galactic halo model For Galactic halo model F III ~ 4e-2 vs. Observed F III < 4e-4 Clear discrepancy!

OB clustering H II LF, WIM Superbubbles Field fraction: ionizing WIM, IGM relation to IMF ISM structure, evolution m up ~ 150 M o Massive Star Feedback

Superwind threshold Metal enrichment Simple Inhomogeneous Model GCE of unevolved systems A self-consistent analytic approach starburst feedback to IGM

Massive Star Feedback  OB population: clustering law, IMF  Radiative: HII LF, diffuse 10 4 K gas  Mechanical: superbubbles, superwinds diffuse 10 6 – 10 7 K gas  Chemical: inhomogeneous chemical evolution

Adiabatic shell evolution L = mech luminosity n = ambient density t = age

– ~ 1 M31 M33 LMC SMC IC 10 LG dwarfs Milky Way (HII LF) Milky Way (SN rate) QGalaxy Porosity: Hot, ionized medium Oey & Clarke 1997, Oey et al volume filling factor of hot ISM superwind mass-loss rate Mac Low & McCray (1988) clustering  = 2

Starbursts ( Clarke & Oey 2002 ) DistributedvsNuclear Equal contrib to porosity by all superbubble R Oey & Clarke 1997 He 2-10: He 2-10: Chandar et al Field population = SSC’s Field population = SSC’s LF L -2 LF L -2 Field OB’s formed in situ Field OB’s formed in situ

R136a / 30 Dor Consistent with no m up Massey & Hunter 1998; Massey 2003 Suggests m up ~ 150 M o Selman et al Consistent with Salpeter slope Expect (14, 19) Expect (14, 19) having m > 120 M o Found (2, 9) stars Found (2, 9) stars If no m up : 1.7x N * ( 85 – 120 M o ) Massey & Hunter 1998 (See also Weidner & Kroupa 2004)

Monte Carlo model Oey & Clarke 1998 zero-age evolved

CHEMICAL FEEDBACK Nucleosynthesis Nucleosynthesis Chemical evolution Chemical evolution MIXING : local MIXING : local HOMOGENIZATION : global HOMOGENIZATION : global IN/OUT-FLOW : open box IN/OUT-FLOW : open box

Simple Inhomogeneous Model Q: filling factor = const n: generations (Oey 2000, 2003) Early times: Stochastic Inhomogeneous evolution

Multi-generation Parent metallicity distribution function

Inhomogeneous evolution: Dispersion Argast et al. (2000) [Fe/H] Audouze & Silk (1995) Thin disk: Oey & Bensby

McWilliam (1997) Cayrel et al. (2005)

mtl-rich + old: high Q e.g., Bulge mtl-rich + old: high Q e.g., Bulge mtl-poor + old: low Q e.g., I Zw 18 mtl-poor + old: low Q e.g., I Zw 18 n = 4 Q = 0.72 n = 24 Q = 0.72 n = 24 Q = 0.12 Evolution parameter: nQ  = nQ  2 = nQ(1-Q)