Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.

Slides:



Advertisements
Similar presentations
EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
Advertisements

Center for Underground Physics, IBS
LTD12, Paris Microstructured magnetic calorimeter with meander shaped pickup coil A. Burck S. Kempf, S. Schäfer, H. Rotzinger, M. Rodrigues, T. Wolf, A.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
X-ray Astronomy Lee Yacobi Selected Topics in Astrophysics July 9.
The AMoRE Project to search for 0  of 100 Mo using low temperature detectors Yong-Hamb Kim ( 김용함 ) - Center for Underground Physics, IBS - KRISS Joint.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
Present and future activities of the Garching group (E15)
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
June X-Ray Spectroscopy with Microcalorimeters1 X-Ray Spectrometry with Microcalorimeters.
Low Temperature X-ray Detectors Caroline K. Stahle NASA / Goddard Space Flight Center.
Milano, 10/11/2006 Double Beta Decay in ILIAS-next Andrea Giuliani.
21. October 2004 IDEA DBD Meeting, Heidelberg 150 Nd activities at TUM V. Lazarev 1, E. Nolte 1, L. Oberauer 1, F. Pröbst 2 1 -Technische Universität München,
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Double beta decay search with TeO 2 bolometers Andrea Giuliani on behalf of the CUORE collaboration University of Insubria (Como) and INFN Milano-Bicocca.
Direct Dark Matter Searches
Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Recent status of dark matter search with ULE-HPGe detector Tsinghua University Qian Yue nd Korea-China Joint Seminar on Dark Matter Search.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
From CDMSII to SuperCDMS Nader Mirabolfathi UC Berkeley INPAC meeting, May 2007, Berkeley (Marina) CDMSII : Current Status CDMSII Perspective Motivation.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
Metallic magnetic calorimeters (MMC) for high resolution x-ray spectroscopy Loredana GASTALDO, Markus LINCK, Sönke SCHÄFER, Hannes ROTZINGER, Andreas BURCK,
The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.
PAUL SCHERRER INSTITUT M. Furlan I. Jerjen E. Kirk Ph. Lerch A. Zehnder Cryogenic Detectors Development at PSI.
DEVELOPMENT OF BETA SPECTROMETRY USING CRYOGENIC DETECTORS M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot CEA Saclay – LIST / LNE, Laboratoire National.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
XEUS Cryogenic Instrument October 2004 Cryogenic X-ray sensor development in US, Europe and Japan Micro-calorimeters Doped - thermistors Astro-E2.
Toward Single Electron Resolution Phonon Assisted Ionization Detectors Motivation DM and CENNS motivation. Detector concept. From CDMSlite to contact-free.
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University 1W. Rau – IPA 2014.
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
Low Mass WIMP Search with the CDMS Low Ionization Threshold Experiment Wolfgang Rau Queen’s University Kingston.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
1 st : Mass Spectrometry on Heavy Molecules with Cryogenic Detectors - status Project Review 2004 PROTEOM 2 nd : Measurement of the Quenching Factors in.
Low Temperature Detector Design for the particle search Kim Seung Cheon (DMRC,SNU)
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
Leo Stodolsky 80th anniversary
From Edelweiss I to Edelweiss II
The CRESST Dark Matter Search Status Report
Cryogenic Particle Detectors in Rare event Searches
Fast neutron flux measurement in CJPL
Double Beta Decay Experiment with CaMoO4 crystal
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
Status of 100Mo based DBD experiment
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
Progress with cryogenic dark matter searches
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
Presentation transcript:

Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search

2 Outline Introduction –Basic idea of low temperature detectors –Sensor comparison (Thermistors, TES, MMC) Low temperature detectors in underground labs –Direct Search for WIMPs, –Search for ββ0ν Low temperature detectors at KRISS –X-ray sensors –Prospective R & D

3 Solid State Detectors Measurement methods (Charge, Light, Temperature) Thermometer Charge collector Semiconductor Light detector Thermometer Scintillator “Low temperature favorable”

4 Basic idea: Calorimetric detection Absorber Thermometer Thermal link Heat sink < 100 mK X-ray, e -, WIMP, etc. Choice of thermometers TES, MMC, Thermistor, STJ, KID etc.

5 Why Low Temperature Detectors? High resolutionLow threshold 240g sapphire (CRESST-I)  580 eV at 10 mK, 99% efficiency Counting 1.5μm(0.8 eV) photons(NIST) Advantages of using cryogenic calorimeters Extreme sensitivity of energy resolution (ΔE/E < 1/1000) Ultra low energy threshold ( < 1 eV) Active for Charge, Light, Phonon chains

6 What to measure? WIMP: CDMS, CRESST, EDELWEISS, etc. Nutrinoless double beta decay: COURICINO (COURE) Direct measument of neutrino mass: MARE Absolute measurement of radioactivity X-ray astronomy: Constellation-X, XEUS Energy Depressive x-ray spectroscopy γ-ray spectrometer Single photon counting: IR, visible, UV, etc. Bio-molecules: time-of-flight mass spectrometry

7 Thermistors Neutron transmuted doped Ge thermistors Ion implantation doped Si thermistors Near metal-insulator transition R(T) : 1 M  100 M  Operated with conventional electronics Slow due to poor coupling between conduction electrons and lattice of the thermistor E dependent resistance Radioactive contamination ( 68 Ge, 3 H)

8 Transition Edge Sensor (TES) Superconducting strip at T c (W, Ir/Au, Mo/Au, Mo/Cu,Al/Ag, etc.) R N : 10 m  1  Proximity effect : Tunable T c (20~200mK) Voltage Bias  negative feedback working point TES ΔIΔI I t ( 초전도상전이센서 )

9 Metallic Magnetic Calorimeter (MMC) ( 자기양자센서 ) Magnetic material (Au:Er) in dc SQUID junctions Field coil Au:Er(10~1000ppm) weakly-interacting paramagnetic system metallic host: fast thermalization ( ~ 1  s) g = G  Δε = 1.5  eV 1 keV  10 9 spin flips Si SQUID Loop Au:Er Absorber

10 Different sensors Superconducting strip at T c (W, Ir/Au, Mo/Au, Mo/Cu) ΔE: keV TESMMC Magnetic material (Au:Er) in a SQUID loop ΔE: keV Thermistor Neutron Transmuted Doped Ge Ion Implantation Doped Si ΔE: keV Conventional electronics Absorber friendly Slow at low temp. Joule Heating Fast, Most sensitive MUX possible Narrow working temp. High-tech. fab. Fast, Wide working temp. Absorber friendly MUX being developed I of 167 Er

11 Outline Introduction –Why? How? What? –Sensor comparison (Thermistors, TES, MMC) Low temperature detectors in underground labs –Direct Search for WIMPs, –Search for ββ0ν Low temperature detectors at KRISS –X-ray sensors –Prospective R & D

12 Direct Search for WIMP using LTDs CDMS, EDELWEISS, CRESST High resolution, Low threshold Active background rejection

13 Background rejection Nuclear recoil on electron recoil bkg Phonon Light Charge Different Ch/Ph or L/Ph ratio for electron recoils and nuclear recoils Event by event discrimination Energy in charge channel (keV ee ) Energy in phonon channel (kev) electron recoils (γ‘s) nuclear recoils (neutrons) Energy in light channel (keV ee ) Energy in phonon channel (kev) electron recoils (e - s, γ‘s) nuclear recoils (neutrons) CRESST CaWO 4

14 Neutrinoless ββ decay with LTD Double Beta Decay with two neutrinos Double Beta Decay with no neutrino (Rare Spontaneous Nuclear Transition) Calorimetric Detection Source ≡ Detector (only neutrinos are allowed to escape from the bulk) e-e- e-e-

15 COURICINO toward COURE COURE (741 kg TeO 2 ) plans to start data taking early 2010 COURICINO (40.7 kg of TeO 2 + NTD Ge) (2006) 130 Te : candidate for ββ-0ν natural abundance (34%) high transition energy (2.53 MeV) 5cm

16 Outline Introduction –Why? How? What? –Sensor comparison (Thermistors, TES, MMC) Low temperature detectors in underground labs –Direct Search for WIMPs, –Search for ββ0ν Low temperature detectors at KRISS –X-ray sensors –Prospective R & D

17 First signal at KRISS for rare events Signal size (a.u.) Counts cosmic ray 6 keV from 55 Fe 5×5×0.5 mm 3 Si with Ti/Au TES 2006/06 S.C. Kim Clear appearance of 6 keV x-rays Important demo. toward massive detectors WIMP, ν, 0νββ etc.

18 Detector development at KRISS TES MMC field coil Au:Er Si SQUID loop 55 Fe spectrum Measured with MMC 2007/11/09, S.J. Lee Mn K a 2 Mn K a 1 18 eV FWHM

19 R & D plan at KRISS Scintillating Detectors for 0νββ at Low temperatures CaMoO 4 Phonon sensor w. TES or MMC Additional light sensor Si or Ge Two detection channels phonon + light TES

20 Comparison with COURE COUREprospect Crystal (abundance) 130 TeO 2 (34%) Ca 100 MoO 4 (9.6%) Q2530 keV3034 keV Phonon sensorNTD GeMMC or TES Debye Temp.260 K420 K B.G. RejectionTBA (none)Light ΔE/E, α( 3 MeV )1/1000 Mass741 kg LocationGran Sasso Start2010 ~ 1/3000 ?? Y2L ??

21 LTD People at KRISS Staffs –Yong-Hamb Kim( 김용함 ) Kyoung-Bum lee( 이경범 ) Minkyu Lee( 이민규 ) Post docs and students –Young-Hwa Lee ( 이영화, post doc) –Yong-Dae Kwon ( 권용대, post master) –Sang-Jun Lee ( 이상준, PhD candidate, SNU) –Hwa-Yong Lee ( 이화용, PhD Candidate, Kongju U.) A few positions available for students and post-docs If interested, talk to us.

22 Thank you ( 감사합니다 )

23 Extra slides

24 Phonon signals Phonon down conversion 1. Very high energy phonon (not stable) ~ 50 K phonon (stable) Anharmonic decay 3. Thermal phonon distribution Inelastic surface scattering Inelastic impurity scattering ~ ns ~ 10 μs Athermal signals: TES, MMC, NbSi Thermal signals: NTD, TES, MMC Size and shape of athermal signals also provide discrimination for surface events

25 Cryogenic massive detectors EDELWEISS-IGe1 kgCh/PhNTD1996Modance EDELWEISS-IIGe2.1kg /10kgCh/PhNTD,NbSi2006Modance CDMS-IGe, Si1 kg, 250 gCh/PhNTD1996Stanford CDMS-IIGe, Si7 kg, 1.4 kgCh/PhTES2003Soudan SuperCDMSGe or Si25 kgCh/PhTES?Sudbury CRESST-IAl 2 O 3 1 kgTES1999Gran Sasso CRESST-IICaWO kg/10 kgL/PhTES2003/06Gran Sasso CUORICINOTeO 2 40 kgNTD2003Gran Sasso CUORETeO kgPh/surf. phNTD~2010Gran Sasso NameTargetTotal MassDiscrimThermometerStartLocation