HHigh-resolution SINFONI+AO tomography of z=2 star-forming galaxies: witnessing the growth of disks and bulges.

Slides:



Advertisements
Similar presentations
Star formation histories and environment Bianca M. Poggianti INAF – Osservatorio Astronomico di Padova WE ARE ALL AFTER THE BIG PICTURE: 1)To what extent,
Advertisements

Quenched and Quenching Galaxies at Low to High Redshifts S.M. Faber & UCSC and CANDELS collaborators Dekel60 Fest December 13, 2011 M31: UV GALEX.
Ultraviolet Properties Early-Type dwarf Galaxies in the Virgo Cluster. Suk Kim and Soo-Chang Rey Astronomy and Space Science, Chungnam National University.
HI Stacking: Past, Present and Future HI Pathfinder Workshop Perth, February 2-4, 2011 Philip Lah.
SDSS and UKIDSS Jon Loveday University of Sussex.
1 The Population and Luminosity Function of AGNs from SDSS Lei Hao Collaborators: Michael Strauss SDSS collaboration Princeton University CFA Lunch Talk:
Galaxy and Mass Power Spectra Shaun Cole ICC, University of Durham Main Contributors: Ariel Sanchez (Cordoba) Steve Wilkins (Cambridge) Imperial College.
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
Star-Formation in Close Pairs Selected from the Sloan Digital Sky Survey Overview The effect of galaxy interactions on star formation has been investigated.
Bayesian Analysis of X-ray Luminosity Functions A. Ptak (JHU) Abstract Often only a relatively small number of sources of a given class are detected in.
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
Luminosity & color of galaxies in clusters sarah m. hansen university of chicago with erin s. sheldon (nyu) risa h. wechsler (stanford)
Jarrett 2005 Extended Source Calibration T. Jarrett & M. Pahre (IPAC/SSC/CfA) IRAC GTO Workshop (CfA) Sep 29, 2005
Clustering of QSOs and X-ray AGN at z=1 Alison Coil Hubble Fellow University of Arizona October 2007 Collaborators: Jeff Newman, Joe Hennawi, Marc Davis,
UCL, Sept 16th 2008 Photometric redshifts in the SWIRE Survey - the need for infrared bands Michael Rowan-Robinson Imperial College London.
Breaks in Radial Stellar Surface Brightness in Spiral Galaxies Brian Barandi (NAU) Mentor: Dr. Deidre Hunter (Lowell Observatory) Image: NASA.
1 Introductory Overview of SDSS Data Products Huan Lin Experimental Astrophysics Group Fermilab.
The scatter and evolution of the color-magnitude relation of elliptical galaxies Christine Ruhland MPIA Students Workshop March 2007.
Environmental Properties of a Sample of Starburst Galaxies Selected from the 2dFGRS Matt Owers (UNSW) Warrick Couch (UNSW) Chris Blake (UBC) Michael Pracy.
15th Dec, 2005UKIDSS SciVer meeting, Edinburgh1 UKIDSS LAS Image Classification Analysis and Some Miscellaneous Issues Richard McMahon Bram Venemans Institute.
What can we learn from the luminosity function and color studies? THE SDSS GALAXIES AT REDSHIFT 0.1.
Obscured AGN in the (z)COSMOS survey AGN9, Ferrara, May Angela Bongiorno Max-Planck-Institut für extraterrestrische Physik, Garching, GERMANY AND.
Renzini Ringberg The cosmic star formation rate from the FDF and the Goods-S Fields R.P. Saglia – MPE reporting work of/with R. Bender, N.
Peter Capak Associate Research Scientist IPAC/Caltech.
Properties of Barred Galaxies in SDSS DR7 - OPEN KIAS SUMMER INSTITUTE - Gwang-Ho Lee, Changbom Park, Myung Gyoon Lee & Yun-Young Choi 0. Abstract We investigate.
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
Seminars on formation and evolution of the Galaxy Feb 12, 2002 The construction of the GSC2.2 Catalog Mario G. Lattanzi Osservatorio Astronomico di Torino.
Galaxy Growth: The role of environment Simone Weinmann (MPA Garching) Collaborators: Guinevere Kauffmann, Frank van den Bosch, Anna Pasquali, Dan McIntosh,
MARK CORRELATIONS AND OPTIMAL WEIGHTS ( Cai, Bernstein & Sheth 2010 )
SDSS photo-z with model templates. Photo-z Estimate redshift (+ physical parameters) –Colors are special „projection” of spectra, like PCA.
A Photometric Study of Unstudied Open Clusters Berkeley 49 & 84 in the SDSS Jinhyuk Ryu and Myung Gyoon Lee Department of Physics & Astronomy, Seoul National.
Gas stripping and its Effect on the Stellar Populations of Virgo Cluster Galaxies Hugh H. Crowl UMass with Jeff Kenney (Yale)‏ Jacqueline van Gorkom (Columbia),
Galaxies in the UKIDSS Large Area Survey Jon Loveday Anthony Smith Celine Eminian University of Sussex.
Baryonic signature in the large-scale clustering of SDSS quasars Kazuhiro Yahata Dept. of Phys., University of Tokyo. Issha Kayo, Yasushi Suto, Matsubara.
Galaxy and Quasar Clustering at z=1 Alison Coil University of Arizona April 2007.
Redshift Evolution Of The Morphology Density Relation Peter Capak B. Mobasher, R. Abraham, R. Ellis, K. Sheth, N. Scoville Postdoctoral Fellow California.
Age determination using AnalySED (multi- dimensional SED analysis) Method (data-analysis part) Zhaoyu Zuo
Observational Test of Halo Model: an empirical approach Mehri Torki Bob Nichol.
1 Galaxy Evolution in the SDSS Low-z Survey Huan Lin Experimental Astrophysics Group Fermilab.
Major dry-merger rate and extremely massive major dry-mergers of BCGs Deng Zugan June 31st Taiwan.
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun.
Katarina Kovač (ETH Zürich) Environmental quenching disentangled: centrals, satellites, and galactic conformity Katarina Kovač, ETH Zürich Collaborators:
AGN feedback in action: constraints on the scaling relations between BH and galaxy at high redshift Andrea Merloni (EXC, MPE) A. Bongiorno (MPE), COSMOS.
Photometric Redshifts of objects in B field Sanhita Joshi ANGLES Workshop, Crete 07/04/2005.
J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale Structure inference.
Emission Line Galaxy Targeting for BigBOSS Nick Mostek Lawrence Berkeley National Lab BigBOSS Science Meeting Novemenber 19, 2009.
The Photometric Properties of NGC 6134 and Hogg 19 SDSS u’g’r’i’z’ Open Cluster Survey: Credit: Credit: SMARTS consortium.
SDSS-II Photometric Calibration:
1 Baryon Acoustic Oscillations Prospects of Measuring Dark Energy Equation of State with LAMOST Xuelei Chen ( 陳學雷 ) National Astronomical Observatory of.
Luminous Red Galaxies in the SDSS Daniel Eisenstein ( University of Arizona) with Blanton, Hogg, Nichol, Tegmark, Wake, Zehavi, Zheng, and the rest of.
Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)
The dependence on redshift of quasar black hole masses from the SLOAN survey R. Decarli Università dell’Insubria, Como, Italy A. Treves Università dell’Insubria,
Multiwavelength Properties of the SDSS Galaxies in Various Classes Feb 19, 2008 Joon Hyeop Lee 1, Myung Gyoon Lee 1, Changbom Park 2, Yun-Young Choi 2.
SWIRE view on the "Passive Universe": Studying the evolutionary mass function and clustering of galaxies with the SIRTF Wide-Area IR Extragalactic Survey.
How are galaxies influenced by their environment? rachel somerville STScI Predictions & insights from hierarchical models with thanks to Eric Bell the.
Two useful methods for the supernova cosmologist: (1) Including CMB constraints by using the CMB shift parameters (2) A model-independent photometric redshift.
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
Budapest Group Eötvös University MAGPOP kick-off meeting Cassis 2005 January
Bayesian Template-Based Approach to Classifying SDSS-II Supernovae from 3-Year Survey Brian Connolly Photometric Supernova ID Workshop 3/16/12.
The Genesis and Star Formation Histories of Massive Galaxies Sept 27, 2004 P. J. McCarthy MGCT Carnegie Observatories.
Galaxy Evolution and WFMOS
The Complete Calibration of the Color-Redshift Relation (C3R2) Survey
Spectral classification of galaxies of LAMOST DR3
A photometric method to classify high-z supernovae found with HSC
Advisors: Tom Broadhurst, Yoel Rephaeli
Basics of Photometry.
Yongmin Yoon, Myungshin Im, Gwang-ho Lee, Gu Lim, and Seong-kook Lee
Voids size distribution in the 2dFGRS
Borislav Nedelchev et al. 2019
Presentation transcript:

HHigh-resolution SINFONI+AO tomography of z=2 star-forming galaxies: witnessing the growth of disks and bulges

High-resolution SINFONI+AO tomography of z=2 star-forming galaxies: witnessing the growth of disks and bulges

SDSS v.s. zCOSMOS Yingjie Peng Advisor: Simon Lilly

SpeczWarning Data values namevaluedescription NOT_MEASURED0Redshift not yet measured. FAILED1Redshift measurement failed. MANUAL_LOC10 Redshift determined "by hand" with low confidence. 4000BREAK11 x-corr redshift determined when EW(4000-Ä--Ä--Ä+ break) > ABLINE_CAII12 Redshift determined from average of CaII triplet fits. INCONSISTENT2 Redshift cross-correlation and emz both high-confidence but inconsistent. XCORR_EMLINE3 Redshift determined from cross- correlation and emz are consistent. XCORR_HIC4 Redshift determined from x-corr with high confidence. XCORR_LOC5 Redshift determined from cross- correlation with low confidence. EMLINE_XCORR6 Redshift from emz plus consistent xcorr redshift measurement. EMLINE_HIC7 Redshift determined from em-lines with high confidence. EMLINE_LOC8 Redshift determined from em-lines with low confidence. MANUAL_HIC9 Redshift determined "by hand" with high confidence. SpecZStatus Data values namevaluedescription OK0x No warnings. NO_SPEC0x No spectrum. NO_BLUE0x No blue side spectrum. NO_RED0x No red side spectrum. NOT_GAL0x Classification does not match galaxy target. NOT_QSO0x Classification does not match quasar target. NOT_STAR0x Classification does not match star target. GAL_COEF0x Galaxy PCA coefficients far off locus (placeholder). EMAB_INC0x Emission and absorption z's inconsistent. AB_INC0x Absorption redshifts inconsistent. EM_INC0x Emission redshifts inconsistent. HIZ0x Redshift is high. LOC0x Confidence is low. LOW_SNG0x Signal to noise is low in g. LOW_SNR0x Signal to noise is low in r. LOW_SNI0x Signal to noise is low in i. 4000BREAK0x EW(4000A break) > NOT_MAPPED0x Fiber was not mapped MANUAL_MAPPED0x Fiber mapping was set manually LOADER_MAPPED0x Single unmapped fiber re-mapped by DB loader

SELECT G.objid, G.ra, G.dec, G.type, G.primTarget as G_primTarget, G.flags, G.primTarget & dbo.fPrimTarget('TARGET_GALAXY') as G_TARGET_GALAXY, G.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BIG') as G_TARGET_GALAXY_BIG, G.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BRIGHT_CORE') as G_TARGET_GALAXY_BRIGHT_CORE, G.petroMag_u, G.petroMag_g, G.petroMag_r, G.petroMag_i, G.petroMag_z, G.petroMagErr_u, G.petroMagErr_g, G.petroMagErr_r, G.petroMagErr_i, G.petroMagErr_z, G.modelMag_u, G.modelMag_g, G.modelMag_r, G.modelMag_i, G.modelMag_z, G.modelMagErr_u, G.modelMagErr_g, G.modelMagErr_r, G.modelMagErr_i, G.modelMagErr_z, G.psfMag_u, G.psfMag_g, G.psfMag_r, G.psfMag_i, G.psfMag_z, G.psfMagErr_u, G.psfMagErr_g, G.psfMagErr_r, G.psfMagErr_i, G.psfMagErr_z, G.extinction_u, G.extinction_g, G.extinction_r, G.extinction_i, G.extinction_z, G.petroR50_u, G.petroR50_g, G.petroR50_r, G.petroR50_i, G.petroR50_z, G.petroR90_u, G.petroR90_g, G.petroR90_r, G.petroR90_i, G.petroR90_z, S.mjd, S.plate, S.fiberID, S.z, S.zConf, S.specclass, S.zStatus, S.zWarning, S.primTarget as S_primTarget, S.primTarget & dbo.fPrimTarget('TARGET_GALAXY') as S_TARGET_GALAXY, S.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BIG') as S_TARGET_GALAXY_BIG, S.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BRIGHT_CORE') as S_TARGET_GALAXY_BRIGHT_CORE, (S.zWarning & (dbo.fSpecZWarning('LOC') + dbo.fSpecZWarning('NO_SPEC') + dbo.fSpecZWarning('NO_BLUE') + dbo.fSpecZWarning('NO_RED')) ) as S_zWarning, P1.z as P1_z, P1.zErr, P1.nnIsInside, P1.chiSq, P1.pzType, P1.dmod, P1.rest_ug, P1.rest_gr, P1.rest_ri, P1.rest_iz, P1.kcorr_u, P1.kcorr_g, P1.kcorr_r, P1.kcorr_i, P1.kcorr_z, P1.absMag_u, P1.absMag_g, P1.absMag_r, P1.absMag_i, P1.absMag_z, P2.photozcc2, P2.photozerrcc2, P2.photozd1, P2.photozerrd1, P2.flag, R.fieldQall, R.opdbq into mydb.sdss_dr7_photo_and_spec_1 from Galaxy as G left outer join SpecObj as S on G.objID = S.bestObjID left outer join Photoz as P1 on G.objID = P1.objid left outer join Photoz2 as P2 on G.objID = P2.objid left outer join RunQA as R on G.fieldID=R.fieldID WHERE G.dec>50.0 AND (G.petroMag_r-G.extinction_r)<=18.0 AND ((G.flags_r & 0x ) != 0) AND ((G.flags_r & 0x c00a0) = 0) AND (((G.flags_r & 0x ) = 0) or (G.psfmagerr_r <= 0.2)) AND (((G.flags_r & 0x ) = 0) or (G.flags_r & 0x1000) = 0) AND (G.primTarget & dbo.fPrimTarget('TARGET_GALAXY') > 0 OR G.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BIG') > 0 OR G.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BRIGHT_CORE') > 0 OR S.primTarget & dbo.fPrimTarget('TARGET_GALAXY') > 0 OR S.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BIG') > 0 OR S.primTarget & dbo.fPrimTarget('TARGET_GALAXY_BRIGHT_CORE') > 0) -- sdss_dr7_photo_and_spec_1 : G.dec> sdss_dr7_photo_and_spec_2 : G.dec>40.0 AND G.dec<= sdss_dr7_photo_and_spec_3 : G.dec>30.0 AND G.dec<= sdss_dr7_photo_and_spec_4 : G.dec>20.0 AND G.dec<= sdss_dr7_photo_and_spec_5 : G.dec>10.0 AND G.dec<= sdss_dr7_photo_and_spec_6 : G.dec> 0.0 AND G.dec<= sdss_dr7_photo_and_spec_7 : G.dec<= 0.0

Flux: 'PETRO', 'MODEL'‚ SDSS ugriz BESSELL UBVRI kcorrect -Mike Blanton kcorrect - K-corrections in ugriz satisfying m = M + DM(z) + K(z) based on the best fit sum of templates mtol - current stellar mass-to-light ratios from model in each band mass - total current stellar mass from model mets - average metallicity in current stars intsfh - total integrated star formation history absmag - absolute magnitude (for missing data, substitutes model fit). (evolution correction *not* applied) amivar - inverse variance of absolute magnitude chi2 - chi^2 of fit b300 - [ngals] star-formation within last 300Myrs relative to average star-formation rate b [ngals] star-formation within last 1Gyrs relative to average star-formation rate Fixing collisions

labmda lambda eta

The prob(z) values are tabulated for 100 redshift bins, centered at z = 0.03 to 1.47, with redshift spacing dz = 1.44/ Column What Unit Description Run SDSS Run number (part of the 5 part run-rerun-camcol-field-obj ID) 1 Rerun SDSS Rerun number (part of the 5 part run-rerun-camcol-field-obj ID) 2 Camcol SDSS Camcol number (part of the 5 part run-rerun-camcol-field-obj ID) 3Field SDSS Field number (part of the 5 part run-rerun-camcol-field-obj ID) 4Obj SDSS Obj number (part of the 5 part run-rerun-camcol-field-obj ID) 5 photozcc2 "cc2" photo-z from the photoz2 table in the CAS 6 photozerrcc2 Error on "cc2" photo-z from the photoz2 table in the CAS 7 photozd1 "d1" photo-z from the photoz2 table in the CAS 8 photozerrd1 Error on "d1" photo-z from the photoz2 table in the CAS 9 Flag Integer flag on photo z 10ObjID SDSS 64-bit unique object id number 11RA Deg J2000 Right Ascension of object 12DEC Deg J2000 Declination of object prob(z) Photometric redshift probability distribution function for object nametypelengthunitucddescription objIDbigint8 ID_MAIN unique ID pointing to PhotoObjAll table zreal4 REDSHIFT_PHOTphotometric redshift zErrreal4 REDSHIFT_PHOT ERROR error of the photometric redshift nnCountsmallint2 NUMBER nearest neighbors after excluding the outliers nnVolreal4 NUMBER gives the 4 dimensional volume of the rectangular bounding box of the nnCount nearest neighbors nnIsInsidesmallint2 CODE_MISC shows if the object to be estimated is inside or outside of the box nnObjIDbigint8 ID_IDENTIFIER objID of the (first) nearest neighbor

SERSIC_AMP[5]: The best fit to the variable "A" in Equation (1) of Blanton et al. (2003), for each band. (nanomaggies/arcsec^2)Blanton et al. (2003) SERSIC_R0[5]: The best fit to the variable "r_0" in Equation (1) of Blanton et al. (2003), for each band. (arcsec)Blanton et al. (2003) SERSIC_N[5]: The best fit to the Sersic index "n" in Equation (1) of Blanton et al. (2003), for each band.Blanton et al. (2003) SERSIC_CHI2[5]: chi^2 for the fit in each band SERSIC_COVAR[2,2,5]: Covariance matrix between SERSIC_R0 and SERSIC_N in the fit for each band. SERSIC_NPROF[5]: The number of profMean annuli used in the fit (see documentation of the radial profile annuli at the SDSS web site)the SDSS web site SERSIC_FLUX[5]: Flux in best fit model in each band (nanomaggies) SERSIC_R50[5]: 50% light radius of best fit model in each band (arcsec) SERSIC_R90[5]: 90% light radius of best fit model in each band (arcsec) SERSIC_PETROFLUX[5]: Flux if SDSS Petrosian flux was measured on best fit model in each band (nanomaggies) SERSIC_PETROR50[5]: 50% light radius if SDSS Petrosian measurement was made on best fit model in each band (arcsec) SERSIC_PETROR90[5]: 90% light radius if SDSS Petrosian measurement was made on best fit model in each band (arcsec) SERSIC_CANON_AMP[5]: The best fit to the variable "A" in Equation (1) of Blanton et al. (2003), for each band, using SERSIC_R0 and SERSIC_N fixed at their best fit values for the i-band. (nanomaggies/arcsec^2)Blanton et al. (2003) SERSIC_CANONFLUX[5]: Flux in best fit in each band using using SERSIC_R0 and SERSIC_N fixed at their best fit values for the i-band. (nanomaggies) SERSIC_CANONPETROFLUX[5]: Petrosian flux in best fit in each band using using SERSIC_R0 and SERSIC_N fixed at their best fit values for the i-band. (nanomaggies) This figure shows a comparison for DR4 data. The x-axis shows the stellar mass from Guinevere's modelling (Kauffmann et al 2003, K03). The y-axis shows the median difference between the K03 mass estimates and those obtained from fitting to the total magnitudes (blue) and to the fibre magnitudes scaled to total (green-ish).

; 0 nn5 with spec z objects only ;flux limited ;zmin=0.01 zmax~0.1 ; 1 edge correction ; 2 nn10 with spec z objects only ; 3 edge correction ; 4 nn5 with spec z objects only ;volume limited Mr=-20 ;zmin=0.02 zmax~0.085 ; 5 edge correction ; 6 nn10 with spec z objects only ; 7 edge correction ; 8 nn5 with spec z objects only ;volume limited Mr=-19 ;zmin=0.02 zmax~0.055 ; 9 edge correction ; 10 nn10 with spec z objects only ; 11 edge correction ; 12 nn5 with spec z objects only ;mass limited mass>10.0 ; 13 edge correction ; 14 nn10 with spec z objects only ; 15 edge correction ; 16 nn5 with spec z objects only ;mass limited mass>10.5 ; 17 edge correction ; 18 nn10 with spec z objects only ; 19 edge correction ; 20 mean density from volume limited Mr=-19 ; 21 mean density from volume limited Mr=-20 ; 22 fiber collision correction ; 23 nn5 with spec z objects only ;volume limited MB=-19.3-z ;zmin=0.02 zmax~0.09 ; 24 edge correction ; 25 nn10 with spec z objects only ; 26 edge correction ; 27 mean density from volume limited MB=-19.3-z ; 28 nn5 with spec z objects only ;volume limited MB=-20.5-z ;zmin=0.02 zmax>>0.1 ; 29 edge correction ; 30 nn10 with spec z objects only ; 31 edge correction ; 32 mean density from volume limited MB=-20.5-z Thanks a lot for Katarina’s advice!

Environment efficiency: Disentangle Environment & Mass Red in D4 dense Red in D1 under dense Density: 5nn, volume limited MB=-19.3-z z= Quartile: defined by mass>10.5

Environment efficiency: Disentangle Environment & Mass Red in D4 dense Red in D1 under dense log( 1+delta) (U-R) rest

Environment efficiency: Define the environment efficiency: ε ε ~ z,delta Disentangle Environment & Mass Red in D4 dense Red in D1 under dense

Define the environment efficiency: ε ε ~ z,delta Baldry 2006

Disentangle Environment & Mass log mass* ε z: z: z:

Mass>11.3

shear tensor.: eigenvalues of ξij: (λ1, λ2, λ3) shear ellipticity e and prolateness p: ν = δ/σ = λ1 + λ2 + λ3 Possible for the 20K sample