Quantum Optical Metrology, Imaging, and Computing

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

A Comparison of Two CNOT Gate Implementations in Optical Quantum Computing Adam Kleczewski March 2, 2007.
Quantum Logic and Quantum gates with Photons
Superconducting qubits
Shanhui Fan, Shanshan Xu, Eden Rephaeli
The Extraction of Higher Order Field Correlations from a First Order Interferometer Scott Shepard Louisiana Tech University.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Quantum Feedback Control of Entanglement in collaboration with H. M. Wiseman, Griffith University, Brisbane AU University of Camerino, Italy Stefano Mancini.
Displaced-photon counting for coherent optical communication Shuro Izumi.

Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Introduction to Photonic Quantum Logic QUAMP Summer School SEPT 2006 J. G. Rarity University of Bristol EU FET:
Schrödinger’s Rainbow: The Renaissance in Quantum Optical Interferometry Jonathan P. Dowling Quantum Science & Technologies (QST) Group Hearne Institute.
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Quantum Interferometric Sensors 22 APR 09, NIST, Gaithersburg Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical.
Jonathan P. Dowling Methods of Entangling Large Numbers of Photons for Enhanced Phase Resolution quantum.phys.lsu.edu Hearne Institute for Theoretical.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
Classical Computers Very Likely Can Not Efficiently Simulate Multimode Linear Optical Interferometers with Arbitrary Inputs quantum.phys.lsu.edu Louisiana.
Jönåthán Påtrîck Døwlîng Quantum Optical Computing, Imaging, and Metrology quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Quantum Science.
Jonathan P. Dowling Distinction Between Entanglement and Coherence in Many Photon States and Impact on Super- Resolution quantum.phys.lsu.edu Hearne Institute.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
Quantum Computing Paola Cappellaro
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
LPHYS’07 – Leon – August 22 nd 2007 Alessandro Zavatta, Valentina Parigi, Myungshik Kim, and Marco Bellini Istituto Nazionale di Ottica Applicata (INOA)
Using entanglement against noise in quantum metrology
Jonathan P. Dowling LINEAR OPTICAL QUANTUM INFORMATION PROCESSING, IMAGING, AND SENSING: WHAT’S NEW WITH N00N STATES? quantum.phys.lsu.edu Hearne Institute.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Jonathan P. Dowling OPTICAL QUANTUM COMPUTING quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Department of Physics and Astronomy Quantum.
Jonathan P. Dowling QUANTUM SENSORS: WHAT’S NEW WITH N00N STATES?
Quantum Imaging MURI Kick-Off Meeting Rochester, June 9-10, Entangled state and thermal light - Foundamental and applications.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Quantum Optics VI Krynica Unconditional quantum cloning of coherent states with linear optics Gerd Leuchs, Vincent Josse, Ulrik L. Andersen Institut.
Quantum Lithography From Quantum Metrology to Quantum Imaging—via Quantum Computing—and Back Again! Jonathan P. Dowling Quantum.
October 1, 2007 Quantum Optical Sensing: Single Mode, Multi-Mode, and Continuous Time Jeffrey H. Shapiro.
Jonathan P. Dowling QUANTUM IMAGING: HAPPY-N00N YEAR! quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Department of Physics & Astronomy Louisiana.
Optical and Quantum Communications Group June 9, 2005 Three Themes for Theory Research: Gaussian States, Coherent Laser Radars, and Multi-Photon Detectors.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Multi-photon Absorption Rates for N00N States William Plick, Christoph F. Wildfeuer, Jonathan P. Dowling: Hearne Institute for Theoretical Physics, LSU.
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
Metrology and integrated optics Geoff Pryde Griffith University.
Role of entanglement in extracting information on quantum processes
ENTANGLED BRIGHT SQUEEZED VACUUM
H1 Squeezing Experiment: the path to an Advanced Squeezer
Quantum Imaging: Q-OCT Department of Electrical & Computer Engineering
Quantum Lithography Presented at SPIE, August 14th, 2006
the illusion of the Heisenberg scaling
Outline Device & setup Initialization and read out
Optical qubits
Schrödinger’s Rainbow:
Quantum Information with Continuous Variables
The Grand Unified Theory of Quantum Metrology
Jonathan P. Dowling QUANTUM LITHOGRAPHY THEORY:
Advanced Optical Sensing
Presentation transcript:

Quantum Optical Metrology, Imaging, and Computing Jonathan P. Dowling Hearne Institute for Theoretical Physics Quantum Science and Technologies Group Louisiana State University Baton Rouge, Louisiana USA quantum.phys.lsu.edu Frontiers of Nonlinear Physics, 19 July 2010 On The «Georgy Zhukov» Between Valaam and St. Petersburg, Russia

Not to be confused with: Quantum Meteorology! Dowling JP, “Quantum Metrology,” Contemporary Physics 49 (2): 125-143 (2008)

Hearne Institute for Theoretical Physics Quantum Science & Technologies Group H.Cable, C.Wildfeuer, H.Lee, S.D.Huver, W.N.Plick, G.Deng, R.Glasser, S.Vinjanampathy, K.Jacobs, D.Uskov, J.P.Dowling, P.Lougovski, N.M.VanMeter, M.Wilde, G.Selvaraj, A.DaSilva Not Shown: P.M.Anisimov, B.R.Bardhan, A.Chiruvelli, R.Cross, G.A.Durkin, M.Florescu, Y.Gao, B.Gard, K.Jiang, K.T.Kapale, T.W.Lee, D.J.Lum, S.B.McCracken, C.J.Min, S.J.Olsen, G.M.Raterman, C.Sabottke, R.Singh, K.P.Seshadreesan, S.Thanvanthri, G.Veronis

Outline Nonlinear Optics vs. Projective Measurements Quantum Imaging vs. Precision Measurements Showdown at High N00N! Mitigating Photon Loss 6. Super Resolution with Classical Light 7. Super-Duper Sensitivity Beats Heisenberg!

Optical Quantum Computing: Two-Photon CNOT with Kerr Nonlinearity The Controlled-NOT can be implemented using a Kerr medium: (3) Rpol PBS z |0= |H Polarization |1= |V Qubits R is a /2 polarization rotation, followed by a polarization dependent phase shift . Unfortunately, the interaction (3) is extremely weak*: 10-22 at the single photon level — This is not practical! *R.W. Boyd, J. Mod. Opt. 46, 367 (1999).

Optical Quantum Computing Two Roads to Optical Quantum Computing Cavity QED I. Enhance Nonlinear Interaction with a Cavity or EIT — Kimble, Walther, Lukin, et al. II. Exploit Nonlinearity of Measurement — Knill, LaFlamme, Milburn, Franson, et al.

Linear Optical Quantum Computing Linear Optics can be Used to Construct 2 X CSIGN = CNOT Gate and a Quantum Computer: Milburn Knill E, Laflamme R, Milburn GJ NATURE 409 (6816): 46-52 JAN 4 2001 Franson JD, Donegan MM, Fitch MJ, et al. PRL 89 (13): Art. No. 137901 SEP 23 2002

WHY IS A KERR NONLINEARITY LIKE A PROJECTIVE MEASUREMENT? Photon-Photon XOR Gate   LOQC   KLM Cavity QED EIT Photon-Photon Nonlinearity ??? Kerr Material Projective Measurement

Projective Measurement Yields Effective Nonlinearity! G. G. Lapaire, P. Kok, JPD, J. E. Sipe, PRA 68 (2003) 042314 A Revolution in Nonlinear Optics at the Few Photon Level: No Longer Limited by the Nonlinearities We Find in Nature!  NON-Unitary Gates  Effective Nonlinear Gates Franson CNOT: Cross Kerr KLM CSIGN: Self Kerr

Shot noise Heisenberg Quantum Metrology H.Lee, P.Kok, JPD, J Mod Opt 49, (2002) 2325 Quantum Metrology Shot noise Heisenberg

Sub-Shot-Noise Interferometric Measurements With Two-Photon N00N States A Kuzmich and L Mandel; Quantum Semiclass. Opt. 10 (1998) 493–500. SNL HL

a† N a N Super-Resolution Sub-Rayleigh AN Boto, DS Abrams, CP Williams, JPD, PRL 85 (2000) 2733 a† N a N Super-Resolution Sub-Rayleigh

New York Times Discovery Could Mean Faster Computer Chips

Quantum Lithography Experiment |20>+|02> |10>+|01>

Quantum Imaging: Super-Resolution  N=1 (classical) N=5 (N00N) 

Quantum Metrology: Super-Sensitivity N=1 (classical) N=5 (N00N) dPN/d Shotnoise Limit: 1 = 1/√N Heisenberg Limit: N = 1/N dP1/d

Showdown at High-N00N! |N,0 + |0,N How do we make High-N00N!? With a large cross-Kerr nonlinearity!* H =  a†a b†b |1 |0 |N |N,0 + |0,N |0 This is not practical! — need  = p but  = 10–22 ! *C Gerry, and RA Campos, Phys. Rev. A 64, 063814 (2001).

Success probability approximately 5% for 4-photon output. FIRST LINEAR-OPTICS BASED HIGH-N00N GENERATOR PROPOSAL Success probability approximately 5% for 4-photon output. Scheme conditions on the detection of one photon at each detector mode a e.g. component of light from an optical parametric oscillator mode b H. Lee, P. Kok, N. J. Cerf and J. P. Dowling, PRA 65, 030101 (2002).

Implemented in Experiments!

N00N State Experiments 1990’s 2-photon 2004 3, 4-photon Super- Mitchell,…,Steinberg Nature (13 MAY) Toronto 2004 3, 4-photon Super- resolution only Walther,…,Zeilinger Nature (13 MAY) Vienna Rarity, (1990) Ou, et al. (1990) Shih (1990) Kuzmich (1998) Shih (2001) 6-photon Super-resolution Only! Resch,…,White PRL (2007) Queensland Nagata,…,Takeuchi, Science (04 MAY) Hokkaido & Bristol 2007 4-photon Super-sensitivity & Super-resolution

Quantum LIDAR “DARPA Eyes Quantum Mechanics for Sensor Applications” — Jane’s Defence Weekly Winning LSU Proposal Nonclassical Light Source Delay Line Detection Target Noise forward problem solver INPUT “find min( )“ FEEDBACK LOOP: Genetic Algorithm inverse problem solver OUTPUT N: photon number loss A loss B

Loss in Quantum Sensors SD Huver, CF Wildfeuer, JP Dowling, Phys. Rev. A 78 # 063828 DEC 2008 N00N Generator Detector Lost photons La Lb Visibility: Sensitivity: N00N 3dB Loss --- N00N No Loss — SNL--- HL— 4/26/2017 22 22

3dB Loss, Visibility & Slope — Super Beer’s Law! Super-Lossitivity Gilbert, G; Hamrick, M; Weinstein, YS; JOSA B 25 (8): 1336-1340 AUG 2008 N=1 (classical) N=5 (N00N) 3dB Loss, Visibility & Slope — Super Beer’s Law! 23

Loss in Quantum Sensors S. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008 N00N Generator Detector Lost photons La Lb A B Gremlin Q: Why do N00N States Do Poorly in the Presence of Loss? A: Single Photon Loss = Complete “Which Path” Information! 24

Towards A Realistic Quantum Sensor S. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008 M&M Generator Detector Lost photons La Lb Try other detection scheme and states! M&M state: M&M Visibility N00N Visibility M&M’ Adds Decoy Photons 0.3 0.05 25

Towards A Realistic Quantum Sensor S. Huver, C. F. Wildfeuer, J.P. Dowling, Phys. Rev. A 78 # 063828 DEC 2008 M&M Generator Detector Lost photons La Lb M&M state: N00N State --- M&M State — A Few Photons Lost Does Not Give Complete “Which Path” N00N SNL --- M&M SNL --- M&M HL — M&M HL — 26

Optimization of Quantum Interferometric Metrological Sensors In the Presence of Photon Loss PHYSICAL REVIEW A, 80 (6): Art. No. 063803 DEC 2009 Tae-Woo Lee, Sean D. Huver, Hwang Lee, Lev Kaplan, Steven B. McCracken, Changjun Min, Dmitry B. Uskov, Christoph F. Wildfeuer, Georgios Veronis, Jonathan P. Dowling We optimize two-mode, entangled, number states of light in the presence of loss in order to maximize the extraction of the available phase information in an interferometer. Our approach optimizes over the entire available input Hilbert space with no constraints, other than fixed total initial photon number.

Lossy State Comparison PHYSICAL REVIEW A, 80 (6): Art. No. 063803 DEC 2009 Here we take the optimal state, outputted by the code, at each loss level and project it on to one of three know states, NOON, M&M, and “Spin” Coherent. The conclusion from this plot is that the optimal states found by the computer code are N00N states for very low loss, M&M states for intermediate loss, and “spin” coherent states for high loss.

Super-Resolution at the Shot-Noise Limit with Coherent States and Photon-Number-Resolving Detectors J. Opt. Soc. Am. B/Vol. 27, No. 6/June 2010 Y. Gao, C.F. Wildfeuer, P.M. Anisimov, H. Lee, J.P. Dowling We show that coherent light coupled with photon number resolving detectors — implementing parity detection — produces super-resolution much below the Rayleigh diffraction limit, with sensitivity at the shot-noise limit. Quantum Classical Parity Detector!

Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit PRL 104, 103602 (2010) PM Anisimov, GM Raterman, A Chiruvelli, WN Plick, SD Huver, H Lee, JP Dowling We show that super-resolution and sub-Heisenberg sensitivity is obtained with parity detection. In particular, in our setup, dependence of the signal on the phase evolves <n> times faster than in traditional schemes, and uncertainty in the phase estimation is better than 1/<n>. SNL HL TMSV & QCRB HofL

Outline Nonlinear Optics vs. Projective Measurements Quantum Imaging vs. Precision Measurements Showdown at High N00N! Mitigating Photon Loss 6. Super Resolution with Classical Light 7. Super-Duper Sensitivity Beats Heisenberg!