Cloud Computing Mapreduce (2) Keke Chen
Outline Hadoop streaming example Hadoop java API Framework important APIs Mini-project
A nice book Hadoop: The definitive Guide You can read it online from campus network - ohiolink ebook center safari online
Hadoop streaming Simple and powerful interface for programming Application developers do not need to learn hadoop java APIs Good for simple, adhoc tasks
Note: Map/Reduce uses the local linux file system for processing and hosting temporary data HDFS is used to host application data HDFS Node Local file system
Hadoop streamining /current/streaming.html /current/streaming.html /usr/local/hadoop/bin/hadoop jar \ /usr/local/hadoop/hadoop-streaming jar \ -input myInputDirs -output myOutputDir \ -mapper myMapper -reducer myReducer Reducer can be empty: -reducer None myMapper and myReducer can be any executable Mapper/reducer will take stdin and output to stdout Files in myInputDirs are fed into mapper as stdin Mapper’s output will be the input of reducer
Packaging files with job submission /usr/local/hadoop/bin/hadoop jar \ /usr/local/hadoop/hadoop-streaming jar \ -input “/user/hadoop/inputdata” \ -output “/user/hadoop/outputdata” \ -mapper “python myPythonScript.py myDictionary.txt” \ -reducer “/bin/wc” \ -file myPythonScript.py \ -file myDictionary.txt -file is good for small files Input parameter for the script
Using hadoop library classes hadoop jar $HADOOP_HOME/hadoop-streaming.jar \ -D mapred.reduce.tasks=12 \ -input myInputDirs \ -output myOutputDir \ -mapper org.apache.hadoop.mapred.lib.IdentityMapper \ -reducer org.apache.hadoop.mapred.lib.IdentityReducer \ -partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
Large files and archives Upload large files to HDFS first Use –files option in streaming, which will download files to local working directory -files hdfs://host:fs_port/user/testfile.txt#testlink -archives hdfs://host:fs_port/user/testfile.jar#testlink Cache1.txt, cache2.txt are in testfile.jar Then, locally testlink/cache1.txt, textlink/cache2.txt
Wordcount Problem: counting frequencies of words for a large document collection. Implement mapper and reducer respectively, using python Some good python tutorials at
Mapper.py import sys for line in sys.stdin: line = line.strip() words = line.split() for word in words: print ‘%s\t1’ % (word)
Reducer.py import sys word2count={} for line in sys.stdin: line = line.strip() word, count = line.split(‘\t’, 1) try: count = int(count) word2count[word] = word2count.get(word, 0)+ count except ValueError: pass for word in word2count: print ‘%s\t%s’% (word, word2count[word])
Running wordcount hadoop jar $HADOOP_HOME/hadoop- streaming.jar \ -mapper "python mapper.py" \ -reducer "python reducer.py" \ -input text -output output2 \ -file /localpath/mapper.py -file /localpath/reducer.py
Running wordcount hadoop jar $HADOOP_HOME/hadoop- streaming.jar \ -mapper "python mapper.py" \ -reducer "python reducer.py" \ -input text -output output2 \ -file mapper.py -file reducer.py \ -jobconf mapred.reduce.tasks=2 \ -jobconf mapred.map.tasks=4
If mapper/reducer takes files as parameters hadoop jar $HADOOP_HOME/hadoop- streaming.jar \ -mapper "python mapper.py" \ -reducer "python reducer.py myfile" \ -input text -output output2 \ -file /localpath/mapper.py -file /localpath/reducer.py -file /localpath/myfile
Hadoop Java APIs hadoop.apache.org/common/docs/curre nt/api/ benefits Jave code is more efficient than streaming More parameters for control and tuning Better for iterative MR programs
Important base classes Mapper Function map(Object, Writable, Context) Reducer Function reduce(WritableComparable, Iterator, Context) Combiner Partitioner
The framework public class Wordcount{ public static class MapClass extends Mapper { public void setup(Mapper.Context context){…} public void map(Object key, Text value, Context context) throws IOException {…} } public static class ReduceClass Reducer { public void setup(Reducer.Context context){…} public void reduce(Text key, Iterator values, Context context) throws IOException{…} } public static void main(String[] args) throws Exception{} }
The wordcount example in java /current/mapred_tutorial.html#Example %3A+WordCount+v1.0 /current/mapred_tutorial.html#Example %3A+WordCount+v1.0 Old/New framework Old framework for version prior to 0.20
Mapper of wordcount public static class WCMapper extends Mapper { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); }
WordCount Reducer public static class WCReducer extends Reducer { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); }
Function parameters Define map/reduce parameters according to your application Have to use writable classes in org.apache.hadoop.io E.g. Text, LongWritable, IntWritable etc. Template parameters and the function parameters should be matched Map’s output and reduce’s input parameters should be matched.
Configuring map/reduce Passing global parameter settings to each map/reduce process In main function, set parameters in a Configuration object Configuration conf = new Configuration(); Job job = new Job(conf, "cloudvista"); job.setJarByClass(Wordcount.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); job.setMapperClass(WCMapper.class); //job.setCombinerClass(WCReducer.class); job.setReducerClass(WCReducer.class); //job.setPartitionerClass(WCPartitioner.class); job.setNumReduceTasks(num_reduce); FileInputFormat.setInputPaths (job, input); FileOutputFormat.setOutputPath (job, new Path(output_path )); System.exit(job.waitForCompletion(true)?0:1);
How to run your app 1. Compile to jar file 2. Command line hadoop jar your_jar your_parameters Normally you need to pass in Number of reducers Input files Output directory Any other application specific parameters
Access Files in HDFS? Example: In map function Public void setup(Mapper.Context context){ Configuration conf = context.getConfiguration(); string filename = conf.get(“yourfile"); Path p = new Path(filename); // Path is used for opening the file. FileSystem fs = FileSystem.get(conf);//determines local or HDFS FSInputStream file = fs.open(p); while (file.available() > 0){ … } file.close(); }
Combiner Apply reduce function to the intermediate results locally after the map generates the result Map1 key1 Key n combineKey1, value1 Key2, value2 … Keyn, valueN reduces Map’s local
Partitioner If map’s output will generate N keys (N>R, R:# of reduces) By default, N keys are randomly distributed to R reduces You can use partitioner to define how the keys are distributed to the reduces.
Mini project 1 1.Learn to use HDFS 2.Read and run wordcount example 2/mapred_tutorial.html 3.Write a MR program for inverted-index /user/hadoop/prj1.txt Implement two versions Script/exe + streaming Hadoop Java API The file has “docID \t docContent” per line Generating inverted index Word \t a list of “DocID:position”