ISSI International Team Meeting

Slides:



Advertisements
Similar presentations
1 Sun-Spots und El Nino Ulrich Cubasch Freie Universität Berlin.
Advertisements

Decadal Variation of the Holton-Tan Effect Hua Lu, Thomas Bracegirdle, Tony Phillips, Andrew Bushell DynVar/SNAP Workshops, April, 2013, Reading,
Dynamical responses to volcanic forcings in climate model simulations DynVar workshop Matthew Toohey with Kirstin Krüger, Claudia Timmreck, Hauke.
Ocean’s Role in the Stratosphere-Troposphere Interaction Yulia A. Zyulyaeva Moscow State University P.P.Shirshov Institute of Oceanology, RAS, Moscow 1/17.
Annular Modes of Extra- tropical Circulation Judith Perlwitz CIRES-CDC, University of Colorado.
Multi-Model Comparisons of the Sensitivity of the Atmospheric Response to the SORCE Solar Irradiance Data Set within the SPARC-SOLARIS Activity K. Matthes.
The dynamical response to volcanic eruptions: sensitivity of model results to prescribed aerosol forcing Matthew Toohey 1 Kirstin Krüger 1,2, Claudia Timmreck.
How does the QBO affect the stratospheric polar vortex? Peter Watson, Lesley Gray Atmospheric, Oceanic and Planetary Physics, Oxford University Peter Watson.
Can the Stratosphere Control the Extratropical Circulation Response to Surface Forcing? Chris Fletcher and Paul Kushner Atmospheric Physics Group University.
YODEN Shigeo Dept. of Geophysics, Kyoto Univ., JAPAN August 4, 2004; SPARC 2004 Victoria + α - β for Colloquium on April 15, Introduction 2.Internal.
Scientific Advisory Committee Meeting, November 25-26, 2002 Modeling of the Middle and Upper Atmosphere M. A. Giorgetta E. Manzini 1, M. Charron 2, H.
The Quasi Biennial Oscillation Examining the link between equatorial winds and the flow regime of the wintertime polar stratosphere Charlotte Pascoe.
AGU 2006 Highlights Le Kuai Dec. 19, 2006 Le Kuai Dec. 19, 2006.
1 Non-stationary Synchronization of Equatorial QBO with SAO in Observation and Model 1. Division of Geological and Planetary Sciences, California Institute.
Did we expect a disturbed stratosphere in ? QBO-EAST ? (Holton & Tan 1980) EL NINO ? (Ineson and Scaife, 2009; Bell et al 2009) SOLAR MINIMUM ?
1 Influences of the 11-year sunspot cycle on the stratosphere – and the importance of the QBO Karin Labitzke, Institute for Meteorology, F.U. Berlin Germany.
National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory Princeton, NJ Evolution of Stratospheric.
Solar Forcing on Climate Through Stratospheric Ozone Change Le Kuai.
The influence of solar variability on North Atlantic climate David Jackson*, Jeff Knight*, Adam Scaife*, Sarah Ineson*, Nick Dunstone*, Lesley Gray †,
Experiments with WACCM: A sensitivity study. OUTLINE Why is a parameterization of gravity waves important? Middle atmosphere (stratosphere + mesosphere)
Langematz, Oberländer, Kunze Ulrike Langematz, Sophie Oberländer and Markus Kunze Institut für Meteorologie, Freie Universität Berlin, Germany The effects.
On the modelling and diagnostics of solar activity effects in the atmosphere On the modelling and diagnostics of solar activity effects in the atmosphere.
The Influence of Solar Variability on the Atmosphere and Ocean Dynamics Speaker : Pei-Yu Chueh Adviser : Yu-Heng Tseng Date : 2010/10/12.
Influence of the sun variability and other natural and anthropogenic forcings on the climate with a global climate chemistry model Martin Schraner Polyproject.
Dynamical control of ozone transport and chemistry from satellite observations and CCMs Mark Weber 1, Ingo Wohltmann 2, Veronika Eyring 3, Markus Rex 2,
Solar Variability and Climate: From Mechanisms to Models
The Influence of Solar Variability on the Atmosphere and Ocean Dynamics Speaker : Pei-Yu Chueh Adviser : Yu-Heng Tseng Date : 2010/10/05.
Using GPS data to study the tropical tropopause Bill Randel National Center for Atmospheric Research Boulder, Colorado “You can observe a lot by just watching”
The Influence of Solar Variability on the Atmosphere and Ocean Dynamics Speaker : Pei-Yu Chueh Adviser : Yu-Heng Tseng Date : 2010/09/16.
SPARC SOLARIS & HEPPA Intercomparison Activities: Overview of SOLARIS Activities WCRP Open Science Conference October 2011 Denver, CO, USA Session.
Influences of the 11-year solar cycle on the tropical atmosphere and oceans Stergios Misios and Hauke Schmidt Max Planck Institute for Meteorology TOSCA.
The Influence of Solar Forcing on Tropical Circulation JAE N. LEE DREW T. SHINDELL SULTAN HAMEED.
Sun-Climate Mechanisms Marvin A. Geller Stony Brook University Stony Brook, NY Marvin A. Geller Stony Brook University Stony Brook, NY
The effects of solar variability on the Earth’s climate Joanna D. Haigh 2010/03/09 Pei-Yu Chueh.
SPARC SOLARIS & HEPPA Intercomparison Activities: Global aspects of the QBO modulation of the solar influence on the stratosphere WCRP Open Science Conference.
Does the Solar Cycle Increase or Decrease the Period of the Quasi-Biennial Oscillation? A Modeling Study Le Kuai 1, Runlie Shia 1, Xun Jiang 2, Ka-Kit.
Multi-Model Comparisons of the Sensitivity of the Atmospheric Response to the SORCE Solar Irradiance Data Set within the SPARC-SOLARIS Activity K. Matthes.
Recent variability of the solar spectral irradiance and its impact on climate modelling - TOSCA WG1 Workshop, May 2012, Berlin Stratospheric and tropospheric.
Seasonal variability of UTLS hydrocarbons observed from ACE and comparisons with WACCM Mijeong Park, William J. Randel, Louisa K. Emmons, and Douglas E.
Past and Future Changes in Southern Hemisphere Tropospheric Circulation and the Impact of Stratospheric Chemistry-Climate Coupling Collaborators: Steven.
Multi-model intercomparison of the impact of SORCE measurements in climate models TOSCA WG1 Workshop May 2012, Berlin K. Matthes (1), F. Hansen (1),
SPARC SOLARIS & HEPPA Intercomparison Activities: Multi-Model Comparisons of the Sensitivity of the Atmospheric Response to the SORCE Solar Irradiance.
A Statistical Analysis on the Stratosphere-Troposphere Coupled Variability by Using Large Samples obtained from a Mechanistic Circulation Model Yoko NAITO.
Understanding the Observed Ozone and Thermal Response To 11-Year Solar Variability Lon Hood Lunar and Planetary Laboratory University of Arizona Tucson,
11-year Solar Signal in Transient Climate Simulations Lesley Gray NCAS University of Oxford Oxford: Dann Mitchell, Scott Osprey Met Office: Neal Butchart,
IAC ETH, 26 October 2004 Sub-project: Effects of Solar irradiance variability on the atmosphere (steady-state sensitivity study) Progress report (final)
© Crown copyright Met Office The stratosphere and Seasonal to Decadal Prediction Adam Scaife, Sarah Ineson, Jeff Knight and Andrew Marshall January 2009.
LASP seminar, 18 October 2011, Boulder
Multi-model intercomparison of the impact of SORCE measurements in climate models TOSCA WG1 Workshop May 2012, Berlin K. Matthes (1), J.D. Haigh.
Role of the Stratosphere in Climate Modelling: The Connection Between the Hadley and the Brewer-Dobson Circulation M. A. Giorgetta (1), E. Manzini (2),
Signature of the positive AO phase in the stratospheric ozone and temperature during boreal winter E. Rozanov 1,2, T. Egorova 1,2, W. Schmutz 1, V. Zubov.
Multi-model intercomparison of the impact of SORCE measurements in climate models K. Matthes (1), J.D. Haigh (2), F. Hansen (1), J.W. Harder (3), S. Ineson.
Dynamical balances and tropical stratospheric upwelling Bill Randel and Rolando Garcia NCAR Thanks to: Qiang Fu, Andrew Gettelman, Rei Ueyama, Mike Wallace,
Dynamical Influence on Inter-annual and Decadal Ozone Change Sandip Dhomse, Mark Weber,
Prepare For The Apocalypse. The largest coronal mass emission (CME) ever detected by scientists breaks off from the sun and hurtles toward the Earth. With.
The impact of solar variability and Quasibiennial Oscillation on climate simulations Fabrizio Sassi (ESSL/CGD) with: Dan Marsh and Rolando Garcia (ESSL/ACD),
THE INFLUENCE OF THE 11-YEAR SOLAR CYCLE ON THE STRATOSPHERE BELOW 30KM: A REVIEW H. VAN LOON K. LABITZKE 2010/04/13 Pei-Yu Chueh.
Dynamical control of ozone transport and chemistry from satellite observations and coupled chemistry climate models Mark Weber 1, Sandip Dhomse 1, Ingo.
WACCM STATUS August 28 th, UCAR Quarterly – winter 1999.
The origin of stratospheric ozone in sensitivity studies with EMAC-FUB EGU – European Geosciences Union General Assembly 2011 Vienna S. Meul 1), S. Oberländer.
An Overview of the Lower and Middle Atmosphere
SCSL SWAP/LYRA workshop
CCSM Working Group Meeting, February 2008
Static Stability in the Global UTLS Observations of Long-term Mean Structure and Variability using GPS Radio Occultation Data Kevin M. Grise David W.
Updates on Solar Signal in the Stratospheric Ozone using a 3D CTM and SAGE v7.0 data Sandip Dhomse, Martyn Chipperfiield, Wuhu Feng, Ryan Hossaini, Graham.
Stergios Misios, Hauke Schmidt and Kleareti Tourpali
Prepare For The Apocalypse
SOLARIS activity report
T. KRUSCHKE, K. MATTHES, W. HUO, M. KUNZE, U. LANGEMATZ, S. WAHL
Han-Li Liu, Raymond G. Roble, Arthur D. Richmond, Stanley C
Presentation transcript:

ISSI International Team Meeting Bern, Switzerland April 20, 2006 Dynamical Response to the 11-Year Solar Cycle (and the QBO) in the Middle Atmosphere Katja Matthes 1,2 1 Freie Universität Berlin, Institut für Meteorologie, Berlin, Germany 2 National Center for Atmospheric Research, Boulder, Colorado, USA Marie Curie Outgoing International Fellowship

Courtesy of Kuni Kodera (2005) Possible Ways for Solar Influence on Climate Sun Sun Visible UV Ozone T, U Strat. Strat. trop. trop. Dynamical impact Radiative impact ? Earth Earth Direct Influence Indirect Influence Courtesy of Kuni Kodera (2005)

Mechanism – Influence of the 11-Year Solar Cycle Thermosphere UV radiation Mesosphere Direct influence on temperature Influence on ozone Change of meridional temperature gradient Stratopause QBO SAO Gray et al. (2001a,b) Gray et al. (2003, 2004) Labitzke (1987), Labitzke and van Loon (1988) Circulation changes (wind, waves, meridional BD circulation) Kodera and Kuroda (2002) Stratosphere Modeling Matthes et al. (2004) ? Change of Hadley cell of Walker circulation Tropical response Labitzke and van Loon (1988), Kodera (2004), Gleisner and Thejll (2003), Haigh (2003), Haigh et al. (2005), van Loon et al. (2004, 2006), Matthes et al. (2006a) NH polar response Kodera (2002, 2003), Ogi et al. (2004), Kuroda and Kodera (2004, 2006) SH Matthes et al. (2006a) Tropopause Überleitung zur nächsten Folie: hervorheben des Einflusses äquatorialer Winde auf NH Winterentwicklung. Indirect influence, difficult to measure Troposphere Ocean ?

Some Observational Facts

Positive Correlations Sun - Stratospheric Parameters Reference checken Labitzke (1999)

Observed Solar Signal in Temperature Annual Mean NCEP/CPC (1980-1997) 48 km 16 km 60N 60S SSU/MSU4 (1979-1997) +2.5 K 60N 60S Hood (2004) Scaife et al. (2002) +0.8 K -1 K +1 K +0.25 K SSU/MSU4 (1979-2003) + 0.9 K Courtesy of W. Randel (2005) ERA40 (1979-2001) 60S 60N 48 km 16 km + 1.75K + 0.5K Crooks & Gray (2005) Umstrittenes beobachtetes Temperatursonnensignal! Schwierigkeit der Vergleichbarkeit mit Modell, da nur kleiner Teil komplett abgedeckt wird (Adams Bild!!)

Observed Solar Signal in Ozone Annual Mean Lee and Smith (2003) SBUV (1979-1989) SAGE (1984-1998) 16km 50km 21km 60N 60S Models vs. Observations - Tropics Calisesi and Matthes (2006) updated from Shindell et al. (1999)

Observed Modulation of Polar Night Jet and Brewer-Dobson Circulation Anomalies Early Winter Confirmation of modulation during NH winter and tropospheric influence with FUB-CMAM (Matthes et al., 2004, 2006a) 1000 Eq ‒ f v*∼ ∇•F ? Kodera and Kuroda (2002)

Development of Modeling Solar Influence on MA 2-D chemical transport model studies (Garcia et al., 1984; Brasseur, 1993; Huang and Brasseur, 1993; Haigh, 1994; Fleming et al., 1995) GCM studies without realistic radiation and ozone changes (e.g., Wetherald and Manabe, 1975; Balachandran and Rind, 1995; Balachandran et al., 1999; Kodera et al., 1991) GCM studies with realistic radiation and ozone changes without QBO (Haigh, 1999; Larkin et al., 2000, Shindell et al., 1999, 2001; Rind et al., 2002; Matthes et al., 2003) GCM studies with realistic radiation and ozone changes and with QBO (Matthes et al., 2004, 2006a; Palmer and Gray, 2005) Studies with Chemistry Climate Models Intercomparison within SOLARIS (Solar Influence for SPARC) (Tourpalie et al., 2003, 2005; Rozanov et al., 2004; Egorova et al., 2005; Langematz et al., 2005; Schmidt and Brasseur, 2006; Marsh et al., 2006; Matthes et al., 2006b)

Perpetual Solar Maximum Experimental Design Perpetual Solar Maximum Perpetual Solar Minimum 15 years Ozone changes (%) Annual Mean Irradiance changes max-min (%) +3 % +2.5 % Data from Haigh (1994) 5-8 % Hervorheben, dass Modelle keine interne QBO haben Dazu wird Schwerewellenparametrisierung, ausreichende räumliche Auflösung, sowie eine realistische Simulation tropischer Konvektion benötigt (z. B. Giorgetta et al., 2002; Scaife et al., 2000a) Data from Shindell et al. (1999) Data from Lean et al. (1997)

GRIPS (GCM Reality Intercomparison Project for SPARC) Solar Intercomparison Annual Mean T (max-min) (K) Low latitudes: good agreement in stratospheric temperature signal High latitudes: dynamical signal very different Main result: improvement of model climatology = pre-requisite for realistic solar signal Matthes et al. (2003), Kodera et al. (2003)

Model Description FUB-CMAM Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM) (Langematz and Pawson, 1997; Pawson et al., 1998, Langematz et al., 2003, Matthes et al., 2004) T21L34 (5,6 x 5,6 ), top: 80km (mesosphere) Ozone climatology Based on ECHAM model family No self-consistent QBO => Relaxation of the zonal mean wind in the model toward rocketsonde data from Gray et al. (2001) FUB-CMAM: Hochaufgeloestes Strahlungsschema (43 Baender))

FUB-CMAM vs. Observations (Max-Min) – NH Winter NCEP/CPC (1979-1998) ERA40 (1979-2001) Matthes et al. (2004) FUB-CMAM 80 km stratospheric response tropospheric Nov „poleward-downward“ movement modulation of the PNJ at high lats Dec comparable with observations (e.g., Kodera, 1995) Jan Feb 0.1 0.4 hPa 850 1000 update of Kodera (1995) Gray et al. (2004)

Modulation of the Brewer-Dobson Circulation Correlations: - Vertical Component of EPF (60N/10 hPa) in December and January Temperature Absolut (Min) less wave forcing at high lats lower temperatures at high lats & higher temperatures at low lats => weaker BDC Warming in tropical lower stratosphere dynamically induced! Überleitung zur nächsten Folie Matthes et al. (2006a)

Impact on Tropospheric Circulation Pattern Ev. Nur diese Abb. Zeigen, um Zeit zu sparen! Koennte aber auch kritisch sein, da in WACCM nicht so ganz klar ist, woher Erwaermung der unteren Stratosphaere kommt…. VORSICHT! Kodera, in preparation (2006)  Jo Haigh will talk about stratosphere-troposphere coupling

Observations: QBO-Solar Signal QBO East warm, disturbed polar vortex QBO West cold, undisturbed Solar Minimum Solar Maximum warm, disturbed polar vortex cold, undisturbed Labitzke (1987), Labitzke and van Loon (1988) Holton and Tan (1980, 1982) Importance of upper stratospheric winds on NH winter evolution: Gray et al. (2001a,b), Gray et al. (2003), observations and mechanistic model study, Gray et al. (2004), Palmer and Gray (2005), Pascoe et al. (2006) GCM study Observed 11-year solar cycle in QBO itself: Salby and Callaghan (2000, 2006), Soukharev and Hood (2001), QBOw longer during solar max QBO modulation confirmed with 2D model (McCormack, 2003) and GCM (Palmer and Gray, 2005) Salby und Callaghan eventuell erst spaeter am Ende erwaehnen, da hier sonst verwirrend, da das mit den jetzigen Modellstudien, die ich vorstelle nicht gezeigt werden kann…. Hmm, Palmer and Gray (2005) ev. Doch!!!!

QBO-Sun Interaction in the FUB-CMAM 10hPa north pole temperature +/-2σ Solar Minimum QBO west warmer Solar Maximum °C E W Sowohl LvL welche sich nur auf Winde in der unteren Stratosphaere beziehen als auch Gray, da Wind im Modell ueber die gesamte Stratosphaere erst dieses Ergebnis brachte!!! QBO east warmer confirms observations from Labitzke und van Loon as well as Gray et al.! also confirmed with Unified Model with self-consistent QBO (Palmer and Gray, 2005) Matthes et al. (2004)

Model Description UKMO Stratosphere-Mesosphere Model (SMM) UKMO Mechanistic primitive-equation model of the middle atmosphere (SMM); Midrad radiation scheme, Rayleigh friction 100-0.01 hPa (16-80 km) 5° x 5° x 2 km constant amplitude wavenumber 1 forcing at lower boundary initial conditions = August perpetual January conditions experiments = 300 day long 20-ensembles in each experiment Courtesy of Lesley Gray (2005)

Polar Temperature at 24 km Experiment A: Varying the Bottom Boundary Experiment B: Varying the Equatorial Winds 100 m 150 m +40 ms-1 +20 ms-1 Polar Temperature Time 200 m 250 m 0 ms-1 -20 ms-1 Identical 300 m 350 m -40 ms-1 Changing the tropospheric forcing or the equatorial winds alters the timing of the warmings Courtesy of Lesley Gray (2005)

Stratosphere Mesosphere Model expt Time-series of polar temperature 20-member ensemble Easterly anomaly imposed in subtropics at 40-50km to mimic a solar minimum anomaly Timing of sudden warmings is very variable in control run Courtesy of Lesley Gray (2005)

Variance of NP temperature at 24 km in UKMO GCM exp. SAO + deep QBO control SAO-only Pascoe, Gray and Scaife, 2006 (GRL) Courtesy of Lesley Gray (2005)

Model Description NCAR-WACCM NCAR Whole Atmosphere Community Climate Model (NCAR-WACCM) (Collins et al., 2004; Sassi et al., 2005) 4 x 5 L66, top: 140km (thermosphere) Interactive chemistry Based on NCAR Community Climate Model family No self-consistent QBO Relaxation of the zonal mean wind in the model toward rocketsonde data from Gray et al. (2001) Very similar experiments as with the FUB-CMAM, perpetual solar and QBO simulations FUB-CMAM: Hochaufgeloestes Strahlungsschema (43 Baender))

WACCM Annual Mean Results - Differences Ozone and Temperature (Max-Min): QBO East experiments Temperature (K)  Maxima in temperature and ozone comparable to observations +0.75K +3% +2.5%  relative minimum in the middle stratosphere +0.2K +1%  secondary maximum in the lower stratosphere +0.5K +3% 99% 95% significant Matthes et al. (2006b), to be submitted

Comparison NH Winter Response WACCM versus FUB-CMAM Difference WACCM: ozone calculated interactively FUB-CMAM: ozone prescribed

Zonal Mean Wind Differences - Models vs. Observations NCEP-CPC (1979-1998) WACCM 4x5 Matthes et al. (2006b) WACCM 1.9x2.5 FUB-CMAM Nov Dec Jan Matthes et al. (2004)

WACCM NH Winter Signal - Lower Stratosphere and Troposphere Dec T max-min (K) Jan omega min (hPa/s) Jan omega max-min (hPa/s) Eq 30N 60N 30S 60S +1K Jan T max-min (K) 60S 30S Eq 30N 60N confirms recent observational study about influence on Hadley and Walker circulation from van Loon et al. (2006)!

WACCM NH Summer Signal - Lower Stratosphere and Troposphere May T max-min (K) Jun omega min (hPa/s) Jun omega max-min (hPa/s) Eq 30N 60N 30S 60S Jun T max-min (K) +0.5K 60S 30S Eq 30N 60N first model results that confirm observational study about influence on Hadley and Walker circulation from e.g., van Loon et al. (2004), Kodera(2004)

WACCM - Impact of Different Horizontal Resolution T90N @ 10hPa U60N @ 10hPa Jul Sep Nov Jan Mar May more SSWs! 4˚x 5˚ SMIN 1.9˚x 2.5˚ SMIN Jul Sep Nov Jan Mar May

Summary Direct 11-year solar signal in the upper stratosphere leads to modulation of PNJ and BDC that induce indirect circulation changes in the lower stratosphere (Matthes et al., 2004) and down to the troposphere at polar and equatorial latitudes (Matthes et al., 2006a) Solar cycle and QBO both have anomalies in the subtropical upper stratosphere that can reinforce each other and determine the timing of stratospheric sudden warmings - a frequency modulation (Gray et al., 2003, 2004; Matthes et al., 2004; Salby and Callaghan, 2006) Results obtained with the FUB-CMAM are confirmed with more complex interactive WACCM model (Matthes et al., 2006b) WACCM shows for the first time lower stratospheric temperature signal in Dec/Jan and during summer (modulation of the BDC)! Prescribed QBO in FUB-CMAM and WACCM is necessary for a more realistic solar signal vertical structure of temperature and ozone signal captured for the first time in CCM (WACCM) finer horizontal resolution represents interannual variability better and is needed for better wave-mean flow interactions

Outlook 110-years time varying solar cycle with and without time varying QBO intercomparison of recent solar experiments with CCMs within SOLARIS (SPARC initiative) intercomparison of prescribed versus self- consistent QBO Test locking of QBO with annual cycle in mechanistic model

Thank you to Karin Labitzke Ulrich Cubasch Ulrike Langematz (FU Berlin) Kunihiko Kodera Yuhji Kuroda (MRI, Japan) Lesley Gray (Reading University, UK) WACCM group (Byron Boville, Rolando Garcia, Fabrizio Sassi, Dan Marsh, Doug Kinnison, Stacy Walters) (NCAR, USA) Anne Smith (NCAR, USA)