Development of an Electron-Tracking Compton Camera using CF 4 gas at high pressure for improved detection efficiency Michiaki Takahashi N. Higashi, S.

Slides:



Advertisements
Similar presentations
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Advertisements

Chapter 8 Planar Scintigaraphy
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Detection of Gamma-Rays and Energetic Particles
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Terrestrial Gamma-ray Flashes. Gamma Ray Astronomy Beginning started as a small budget research program in 1959 monitoring compliance with the 1963 Partial.
S. Aoki Kobe University OPERA Emulsion Workshop 2006/12/09 Gamma-ray Telescope.
1 Gamma-Ray Astronomy with GLAST May 24, 2008 Toby Burnett WALTA meeting.
High Energy Detection. High Energy Spectrum High energy EM radiation:  (nm)E (eV) Soft x-rays X-rays K Soft gamma rays M Hard gamma.
Simulations with MEGAlib Jau-Shian Liang Department of Physics, NTHU / SSL, UCB 2007/05/15.
Hiroyasu Tajima Stanford Linear Accelerator Center Nov 3–8, 2002 VERTEX2002, Kailua-Kona, Hawaii Gamma-ray Polarimetry ~ Astrophysics Application ~
D_R&D_6 Liquid xenon detector technology Workshop FJPPL’07, 9-12 May 2007, KEK, Japan 3  Medical Imaging with liquid xenon and 44 Sc Eric Morteau, Patrick.
8/18/2015G.A. Fornaro Characterization of diffractive optical elements for improving the performance of an endoscopic TOF- PET detector head Student: G.
Xiaodong Wang ( 王晓冬 ) School of Nuclear Science and Technology Lanzhou University, Lanzhou, China MPGD activities at Lanzhou University July 5, 2013.
X-ray Polarimetry with gas proportional counters through rise-time K. Hayashida, T. Horikawa, Y. Nakashima, H. Tsunemi (Osaka University, Japan)
Gain measurements of Triple Gas Electron Multiplier (GEM) detector with zigzag readout strips V. BHOPATKAR, E. ESPOSITO, E. HANSEN, J. TWIGGER M. HOHLMANN.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.
Hard X and Gamma-ray Polarization: the ultimate dimension (ESA Cosmic Vision ) or the Compton Scattering polarimetery challenges Ezio Caroli,
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
11 th iWoRiD, Prague, Czech Republic Low-power Wide-dynamic-range Readout System for a 64-channel Multi-anode PMT of a Scintillation Gamma Camera Satoru.
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
Update on TPC R&D C. Woody BNL DC Upgrades Meeting October 9, 2003.
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Real-time Imaging of prompt gammas in proton therapy using improved Electron Tracking Compton Camera (ETCC)  TP C Pixel Scintillator Arrays (PSA) RI reagent.
Future work Kamioka Kyoto We feel WIMP wind oh the earth NEWAGE ~ Direction Sensitive Direct Dark Matter Search ~ Kyoto University Hironobu Nishimura
K. Miuchi K. Miuchi July 10, 2008 Dark Matter and Dark Energy Direction-Sensitive Dark Matter Search --NEWAGE-- Kentaro Miuchi (Kyoto University) (New.
75 th Annual Meeting March 2011 Imaging with, spatial resolution of, and plans for upgrading a minimal prototype muon tomography station J. LOCKE, W. BITTNER,
Hard X-ray Polarimeter for Small Satellite Design, Feasibility Study, and Ground Experiments K. Hayashida (Osaka University), T. Mihara (RIKEN), S. Gunji,
X-ray Polarimetry with gas proportional counters through rise-time
NEWAGE Hironobu Nishimura ( Kyoto University) K. Miuchi T. Tanimori, H. Kubo, S. Kabuki, A. Takada, K. Hattori, K. Ueno, S. Kurosawa, T.Ida, S.Iwaki A.
Diego Gonzalez Diaz (Univ. Zaragoza and CERN)
マイクロメッシュを用いた 高増幅率型 μ-PIC の開発 Development of  -PIC using micro mesh 1. Introduction 2. Test operation of prototype 3. Simulation studies 4. Summary 神戸大学.
Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno.
Development of a Gamma Camera Based on an 88 Array of LaBr3(Ce) Scintillator Pixels Coupled to a 64-channel Multi-anode PMT Hidetoshi Kubo, K.Hattori,
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
Takeshi Fujiwara, Hiroyuki Takahashi, Kaoru Fujita, Naoko Iyomoto Department of Nuclear Engineering and Management, The University of Tokyo, JAPAN Study.
M. Staib, M. Abercrombie, B. Benson, K. Gnanvo, M. Hohlmann Department of Physics and Space Sciences Florida Institute of Technology.
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
Prostate probe with SPECT technique NSS – MIC November 5 - KnoxvilleF. Garibaldi- INFN – Roma1 – gr. Coll. ISS  the medical problem  the proposal.
Goddard February 2003 R.Bellazzini - INFN Pisa A new X-Ray Polarimeter based on the photoelectric effect for Black Holes and Neutron Stars Astrophysics.
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
Development of an Electron-Tracking Compton Camera with a Gaseous TPC and a Scintillation Camera for a Balloon-borne experiment (SMILE) Kazuki Ueno, Toru.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
1 Nuclear Medicine SPECT and PET. 2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012.
Development of RPC based PET B. Pavlov University of Sofia.
PoGO_G4_ ppt1 Study of optimized fast scintillator length for the astronomical hard X- ray/soft gamma-ray polarimeter PoGO November 1, 2004 Tsunefumi.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Room-Temperature Semiconductors: From concepts to applications Zhong He Nuclear Engineering and Radiological Sciences Department The University of Michigan,
Development of μ-PIC with resistive electrodes using sputtered carbon Kobe Univ.,Tokyo ICEPP A F.Yamane, A.Ochi, Y.Homma S.Yamauchi, N.Nagasaka, H.Hasegawa,
A. Takada (Kyoto University)  Our motivation   -PIC and MeV gamma-ray telescope   -PIC applications  New type  -PIC.
F.Murtas G.Claps, E.Baracchini 1 EDIT FrascatiOctober 22 h 2015 GEMPIX detectors : GEM with higly pixelated readout Introduction GEMPIX Detectors GEMPIX.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
GEM, applications for SR experiments and tracking in HEP
Development of a Compton Camera for online range monitoring
Low-power Wide-dynamic-range Readout System
Monte Carlo simulation of the GEM-based neutron detector
Development of Hard X-ray Detector with GEM
Application of Nuclear Physics
A.Takada, A.Takeda, T.Tanimori
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
First demonstration of portable Compton camera to visualize 223-Ra concentration for radionuclide therapy Kazuya Fujieda (Waseda University) J. Kataoka,
Gain measurements of Chromium GEM foils
Presentation transcript:

Development of an Electron-Tracking Compton Camera using CF 4 gas at high pressure for improved detection efficiency Michiaki Takahashi N. Higashi, S. Iwaki, S. Kabuki, H. Kubo, S. Kurosawa, K. Miuchi, K. Nakamura, J. D. Parker, T. Sawano, A. Takada A, T. Tanimori, K. Taniue, and K. Ueno Dept. of Physics, Graduate school of Science, Kyoto University, Kyoto, Japan A ISAS/JAXA, Kanagawa, Japan The Twelfth Vienna Conference on Instrumentation, Vienna, Austria 20 February 2010

Outline ・ Introduction  Electron-Tracking Compton Camera (ETCC)  Medical imaging / MeV gamma-ray astronomy ・ Optimization of gas mixture ・ Operation at high pressure ・ Summary

Electron-Tracking Compton Camera (ETCC) μTPC (Time Projection Chamber ) --- 3D track and energy of Compton-recoil electron Scintillation camera --- position and energy of scattered gamma ray Scintillator μPIC GEM e-e- B26 K. Ueno, A22 S. Kurosawa 2 events 1  Determination of direction and energy of each incident gamma ray  Large FOV (  3 sr)

10 cm 400  m pitch anode cathode Proton 10cm Electron Example of 3D track Electric field  TPC (Time Projection Chamber) for 3D electron track GEM (Gas Electron Multiplier) (F. Sauli (1997)) + μPIC (micro PIxel Chamber)  2D readout micro pattern gaseous detector  2D readout + Drift time  3D track Prototype  TPC size : 10×10×10 cm 3 Gas : Ar/C 2 H 6 (90:10) at 1 atm, sealed Position resolution :  150  m (1D) Stable gas gain :  (  PIC :  3000, GEM :  10)

GSO and LaBr 3 Scintillation Cameras GSO 8×8 Pixel 13 mm 6 mm 15 x 15 cm 2 Camera (GSO or LaBr 3 + Multi anode PMT (H8500, HPK)) Number of pixels: 576 Pixel size 6×6×13 mm 3 (GSO) 6×6×15 or 20 mm 3 (LaBr 3 ) GSO Energy resolution :10.0 % FWHM) LaBr 3 Energy resolution: 6.5% FWHM) Position resolution: 6mm Black :GSO Red : LaBr3 15 cm 5 cm

MeV gamma-ray camera projects Astronomy : Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment (SMILE) 1. SMILE-I (2006, launched) Operation test of km Measurement of diffuse cosmic and atmospheric gamma rays (  400 photons)  4 hours 2. SMILE-II (2011) Observation of Crab Nebula or Cygnus X-1  3 hours Medical : Advantage point: wide energy dynamic range (300 – 3000 keV) and wide FOV (SPECT < 300 keV, PET 511 keV) 1. Multi RI Tracer Imaging --- The development of new RI drugs 2. Proton Therapy --- Real time monitor of prompt gamma rays to measure Bragg-peak position Scinti : LaBr 3 Scinti : GSO

Energy window : ±10% 1004  1228 keV Examples of Medical Imaging Zn-65-Porphyrin imaging (1116 keV) Porphyrin was accumulated in RGK-36 which is the tumor of rat stomach cancer. γ 60cm 180cm 365 keV (Tumor) 511keV (Brown fat cell) Scinti : LaBr 3 2 sources imaging ETCC for medical use Activity : 0.16 MBq Time : hours Events : 173 events Scintillator  TPC Time : 6 hours ETCC/CT Spatial resolution  10 mm (FWHM)

Improvement of detection efficiency Optimization of gas Operation at high pressure Increase detection area Multi-head camera (10×10×10 cm 3 ×2,3,…) Developing a large size ETCC (30×30×30 cm 3 ) For High Sensitivity 2 times better than our prototypes

Demerit of CF 4 gas Low gas gain  isoC 4 H 10 gas (penning effect) High dependence of drift velocity on electric field  worse position resolution ? Selection of gas sealed in  TPC Merit of CF 4 gas Small diffusion  better position resolution (for  TPC)  better angular resolution (for ETCC) low Z (C : Z=6, F : Z=9) and 42 electrons in one molecule  Compton scattering is dominant  higher efficiency (for ETCC) Ar/C 2 H 6 (90:10)  CF 4 gas mixture

Drift Cage 10 cm Optimize the gas mixture Electronics  TPC source GEM (SciEnergy)  PIC Gas Ar/C 2 H 6 (90:10) Ar CF 4 isoC 4 H 10 Measurement 1.Gas Gain 2.Position Resolution Requirements : High CF 4 ratio Gas Gain  20, cm

CF 4 45% CF 4 50% Improved by more than 2 by introducing isoC 4 H 10 This gas  GEM = 340V The other  GEM = 400V CF 4 20% CF 4 30% CF 4 40% Gas Gain at 1 atm  Penning effect of isoC 4 H 10 

 = 162  m D = 81  m/cm 1/2 Ar/CF 4 /isoC 4 H 10 (54:40:6) muon tracks  = 156  m D = 175  m/cm 1/2 Better by factor 2 l : Drift length D : Diffusion Constant Position Resolution Ar/C 2 H 6 (90:10)

Ar/C 2 H 6 (90:10) at 1 atm Ar/C 2 H 6 (90:10) at 2 atm Ar/CF 4 /isoC 4 H 10 (54:40:6) at 1 atm Ar/CF 4 /isoC 4 H 10 (54:40:6) at 1.4 atm Measurement 1.Gas Gain 2.Drift Velocity 3.Position Resolution 4.Energy Resolution High Pressure 100 mm 2 mm 100  mt GEM 2 mm 100 mm 50  mt GEM  PIC Drift Plane (Al Mylar) Electronics  TPC source

Gas Gain Upper  GEM = 350V Lower  GEM = 250V Upper  GEM = 460V Lower  GEM = 360V Upper  GEM = 500V Lower  GEM = 380V Upper  GEM = 610V Lower  GEM = 450V Lower gas gain

Drift Velocity Difference between simulation and measurement is smaller than  10%

Position Resolution Ar/C 2 H 6 (90:10) at 1 atm Ar/C 2 H 6 (90:10) at 2 atm Ar/CF 4 /isoC 4 H 10 (54:40:6) at 1 atm Ar/CF 4 /isoC 4 H 10 (54:40:6) at 1.4 atm  = 332  m, D = 246  m/cm 1/2  = 302  m, D = 204  m/cm 1/2  = 378  m, D = 147  m/cm 1/2  = 330  m, D = 128  m/cm 1/2 Better by factor  2 Better by factor  1.6

Energy Resolution 31 keV X-ray from 133 Ba (31 keV) Ar/C 2 H 6 (90:10) at 1 atmAr/C 2 H 6 (90:10) at 2 atm Ar/CF 4 /isoC 4 H 10 (54:40:6) at 1 atm Ar/CF 4 /isoC 4 H 10 (54:40:6) at 1.4 atm 43.8% keV 53.1% keV 56.1% keV 60.0% keV Worse than prototype

Imaging with ETCC gamma-ray from 133 Ba (356 keV, 800 kBq) Electronics  TPC source GSO Scintillation Camera Measurement 1.Efficiency 2.Angular resolution (ARM and SPD) 15 cm ARM : Angular Resolution Measure SPD : Scatter Plane Deviation

Efficiency and Angular Resolution ( 133 Ba 356 keV) GasPressureEfficiencyARM (FWHM)SPD (FWHM) Ar/C 2 H 6 (90:10)1 atm 1.81× °114.8° Ar/C 2 H 6 (90:10)2 atm 3.55× °105.1° Ar/CF 4 /isoC 4 H 10 (54:40:6)1 atm 2.44× °117.9° Ar/CF 4 /isoC 4 H 10 (54:40:6)1.4 atm 3.51× °119.1° ARM (FWHM) [degree] SMILE-I 2006 (Xe + GSO) Ar/C 2 H 6 TPC + GSO scintillator the highest spec. This Work (GSO) Ar/CF 4 /isoC 4 H 10 (54:40:6) at 1.4 atm Imaging of 133 Ba 15 cm away from top of  TPC better by factor 1.94 Ar/C 2 H 6 TPC + LaBr 3 scintillator

Summary In order to improve the efficiency of the ETCC, we have optimized the gas mixture and pressure sealed in the  TPC. The highest ratio of CF 4 gas with steady gas gain of  20,000 is Ar/CF 4 /isoC 4 H 10 (54:40:6). The diffusion constant of Ar/CF 4 /isoC 4 H 10 (54:40:6) is 2 times better than that of Ar/C 2 H 6 (90:10), so the position resolution is improved. The efficiency for the ETCC using Ar/CF 4 /isoC 4 H 10 (54:40:6) at 1.4 atm is 2 times higher than that using Ar/C 2 H 6 (90:10) at 1 atm, and those ARMs are comparable (  11  at 356 keV (FWHM)).

Thank you for your attention

Vs. Conventional Compton Camera Advanced Conventional Reconstruction : circle Direction error region : donut DO NOT measure the track of a Recoil electron 150 events 600 events X [cm] Y [cm] X [cm] 15 Y [cm] 137 Cs(1MBq)  2, Classical Compton 137 Cs(1MBq)  2, Advanced Compton Measure the 3-D track of a Recoil electron Reconstruction : point Direction error region: arc COMPTEL Our ETCC

Position-Sensitive Scintillation Camera 13mm 6 mm 5cm Multi-anode Photo Multiplier Tube (PMT) HPK H8500 8x8 anodes GSO(Ce) 8x8 pixels Pixel size: 6x6x13mm 3 5cm X-position (a. u.) Y-position (a. u) Counts (a. u.) 2-D image in flood-field irradiation 137 Cs Dynamic energy range: MeV Eng. Resolution: 10.5 keV

Assembly of LaBr 3 (Ce) array 6.1 mm pitch Using our technique, we assembled an 8  8 array. 54mm 20mm (=multi-anode PMT H8500 anode pitch) GSO array LaBr 3 array LaBr 3 FWHM(%)= (5.7  0.4)  (E/662keV)  0.01 GSO FWHM(%)= (10.4  0.3)  (E/662keV)  0.01 LaBr 3 : hygroscopic Hermetic package GSO monolithic LaBr 3 monolithic 133 Ba  E/E = 4.1  keV (FWHM)

Angular Res. Simulation including  TPC Scattered  E : energy Recoil e - K: energy Scattering angle φ  Incident   φ Angular resolution (ARM) Calculated assuming 1, no error in position of Compton point 2, energy Res. of TPC : keV Eng. Res. (FWHM) of LaBr 3 (Ce) : ~ keV Loef et al. (2001) Doppler broadening (Ar) Zoglauer et al. (2003) Angular resolution (FWHM) [degree] 10.5 % 4.2  7% 3.1  5% 2.3  3% 2.1  Sci. Eng. ETCC. Angular

Energy Dynamic Range Ce- 139 Cr- 51 Ba- 133 I- 131 Au- 198 Na- 22 F- 18 Cu- 64 Cs- 137 Mn- 54 Fe- 59 Zn- 65 Co- 60 Ener gy [keV] , , , 1333 Energy dynamic range : 167 – 1333 keV. Measured sources SPECTPET 26

Spatial resolution vs. Energy Goal : Same resolution as human 511keV Spatial Resolution 27

I-131-MIBG & F-18-FDG imaging (365 & 511 keV) PET/SPECT/CT Rainbow : PET Orange : SPECT Rainbow : 511keV Orange : 365keV PC12 Brown fat cell PC12 Brown fat cell 6cm Dept. of Bioanalysis, Kyoto University H. Kimura, H. Amano and H. Saji Scinti : LaBr 3

Zn-65 mouse imaging Measurement after dissection Liver :0.04 MBq Spleen :0.02 Pancreas:0.02 Heart :0.02 Stomach : 0.01 Kidney : 0.00 Intestinal:0.11 Brain :0.02 Other :0.79 BG :0.03 Mouse Zn-65 imaging Energy : 1116keV activity : 1.4MBq obs. time : 2784 min Events : 629 events 3x3 LaBr 3 Install to 10cm-ETCC Zn is a good tracer for diabetes

All kinds of experiment gas (45 types) No. Gas 1CF 4 /isoC 4 H 10 (95:5) 2CF 4 /isoC 4 H 10 (90:10) 3CF 4 /isoC 4 H 10 (80:20) 4Ar/C 2 H 6 (90:10) 5Ar/C 2 H 6 /CF 4 (72:8:10) 6Ar/C 2 H 6 /CF 4 /isoC 4 H 10 (69.3:7.7:20:3) 7Ar/C 2 H 6 /CF 4 (63:7:30) 8Ar/C 2 H 6 /CF 4 (54:6:40) 9Ar/C 2 H 6 /CF 4 (45:5:50) 10Ar/C 2 H 6 /CF 4 /isoC 4 H 10 (42.3:4.7:50:3) 11Ar/C 2 H 6 /CF 4 (27:3:70) 12Ar/CF 4 /isoC 4 H 10 (95:3:2) 13Ar/isoC 4 H 10 (90:10) 14Ar/CF 4 (90:10) 15Ar/CF 4 (80:20) No. Gas 31Ar/CF 4 /isoC 4 H 10 (64:30:6) 32Ar/CF 4 /isoC 4 H 10 (63:30:7) 33Ar/CF 4 /isoC 4 H 10 (56:40:4) 34Ar/CF 4 /isoC 4 H 10 (55:40:5) 35Ar/CF 4 /isoC 4 H 10 (54:40:6) 36Ar/CF 4 /isoC 4 H 10 (53:40:7) 37Ar/CF 4 /isoC 4 H 10 (52:40:8) 38Ar/CF 4 /isoC 4 H 10 (49:45:6) 39Ar/CF 4 /isoC 4 H 10 (47:50:3) 40Ar/CF 4 /isoC 4 H 10 (46:50:4) 41Ar/CF 4 /isoC 4 H 10 (45:50:5) 42Ar/CF 4 /isoC 4 H 10 (44:50:6) 43Ar/CF 4 /isoC 4 H 10 (43:50:7) 44Ar/CF 4 /isoC 4 H 10 (42:50:8) 45Ar/CF 4 /isoC 4 H 10 (40:50:10) No. Gas 16Ar/CF 4 /isoC 4 H 10 (78:20:2) 17Ar/CF 4 /isoC 4 H 10 (77:20:3) 18Ar/CF 4 /isoC 4 H 10 (76:20:4) 19Ar/CF 4 /isoC 4 H 10 (75:20:5) 20Ar/CF 4 /isoC 4 H 10 (74:20:6) 21Ar/CF 4 /isoC 4 H 10 (73:20:7) 22Ar/CF 4 /isoC 4 H 10 (72:20:8) 23Ar/CF 4 /isoC 4 H 10 (73:25:2) 24Ar/CF 4 /isoC 4 H 10 (72:25:3) 25Ar/CF 4 /isoC 4 H 10 (71:25:4) 26Ar/CF 4 /isoC 4 H 10 (70:25:5) 27Ar/CF 4 /isoC 4 H 10 (69:25:6) 28Ar/CF 4 /isoC 4 H 10 (67:30:3) 29Ar/CF 4 /isoC 4 H 10 (66:30:4) 30Ar/CF 4 /isoC 4 H 10 (65:30:5) CF 4 base Ar/C 2 H 6 (90:10) base Fixing CF 4 ratio changing Ar and isoC 4 H 10 ratio

 -PIC : 2-D gaseous detector 10cm Size: 10 cm x 10 cm Pixel pitch: 400  m ~ 65,000 pixels Gas gain:  ~6,000 (stable operation of more than 1 month) 400μm pitch anode cathode Cu

 -PIC : gain and Energy spectrum Gas gain uniformity RMS ~ 7% Energy spectrum ( 55 Fe)  E/E 5.9 keV Ar-escape Energy [keV] We filled with Ar(90%) + C 2 H 6 (10%) gas at 1atm

X-ray imaging with  -PIC Test chart image Position resolution: 120  m AMP-Discri. Board Based on a chip for ATLAS Thin Gap Chamber 0.8V/pC 1 mm

Proton Therapy 150MeV proton 200MeV Depth in Tissue (water) [mm] Attack on Cancerous cells proton Gamma rays neutron Water phantom Simulation study ETCC :  ability to detect Prompt gamma rays as the monitor  Wide energy range ( MeV)  Rejection of Neutron  Wide field of view (~3 str.) 511keV 2.2MeV Gamma rays neutron Simulation Monitoring Before treatment: ionization chamber After treatment: PET technique (PET: positron emission tomography) Real time : none

We are developing a monitor for Proton Therapy 160 MeV Proton Water Phantom ETCC (10cm) 3 TPC 30cm Experiment in Osaka Univ. Research Center for Nuclear Physics (RCNP) collaborator : J. Kim (Research Institute and Hospital, National Cancer Center, Korea)

Sensitivity in X / Gamma-ray Astronomy ba d good 1mCrab EGRET Air Cherenkov Fermi ~1 ° suzaku HXD continuous sensitivity [erg/cm 2 /sec] energy [eV] Our goal keVGeVTeVMeV

Energy spectrum diffuse cosmic  rays atmospheric  rays SMILE-1 Previous results [Energy] Flux [photons / (cm 2 sec str keV)] SMILE-1 Previous results Flux [photons / (cm 2 sec str keV (g / cm 2 ))] [Energy] We detected 420 photons MeV, km for 4 hours