Philip Bambade Laboratoire de l’Accélérateur Linéaire

Slides:



Advertisements
Similar presentations
ATF2 Interaction Point Beam Size Monitor (Shintake Monitor) Status T. Yamanaka, M. Oroku, Y. Yamaguchi, S. Komamiya ( Univ. of Tokyo ), T. Suehara, Y.
Advertisements

Bunch shape monitor for Linac-4 A.V.Feschenko Institute For Nuclear Research (INR), Moscow , Russia.
Study of alternative optical parameters for the ILC final focus On-going work and plans Philip Bambade Laboratoire de l’Accélérateur Linéaire Université.
Halo calculations in ATF DR Dou Wang (IHEP), Philip Bambade (LAL), Kaoru Yokoya (KEK), Theo Demma (LAL), Jie Gao (IHEP) FJPPL-FKPPL Workshop on ATF2 Accelerator.
Beam Halo Measurement using Diamond Sensor at ATF2 S. Liu, P. Bambade, F. Bogard, P. Cornebise, V. Kubytskyi, C. Sylvia, A. Faus-Golfe, N. Fuster-Martínez,
Slide 1 Diamonds in Flash Steve Schnetzer Rd42 Collaboration Meeting May 14.
Diamonds in CDF Peter Dong, UCLA Ricardo Eusebi, FNAL Anna Sfyrla, Geneva Rick Tesarek, FNAL Rainer Wallny, UCLA With much help from Jonathan Lewis (FNAL)
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
TOF at 10ps with SiGe BJT Amplifiers
IPBPM piezo-mover system and plans for in situ monitoring of calibration and stability Current status and plan for ATF2 Philip Bambade Laboratoire de l’Accélérateur.
experimental platform
-brief report of October runs and some inputs for the Nov/Dec planning – Nobuhiro Terunuma, KEK, ATF ATF session on LCWS13, Tokyo Univ., Nov. 13, 2013.
1 ATF2 - IP Chamber Design and manufacturing of Chamber with high precision piezo actuators for high resolution BPMs Status / progress report – 26 June.
High Resolution Cavity BPM for ILC final focal system (IP-BPM) ILC2007/LCWS 2007 BDS, 2007/6/1 The University of Tokyo, KEK, Tohoku Gakuin University,
STRIPLINE KICKER STATUS. PRESENTATION OUTLINE 1.Design of a stripline kicker for beam injection in DAFNE storage rings. 2.HV tests and RF measurements.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Particle-in-Cell Modeling of Rf Breakdown in Accelerating Structures and Waveguides Valery Dolgashev, SLAC National Accelerator Laboratory Breakdown physics.
1 Plans for KEK/ATF 1. Introduction 2. Related Instrumentations at ATF 3. Experimental Plans for Fast Kicker R&D at ATF Junji Urakawa (KEK) at ILC Damping.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
Laser Stripping and H 0 monitor systems 10/18/2011B.Cheymol, E. Bravin, U. Raich, F. Roncarolo BE/BI1.
CVD diamond detector as a beam monitor for a high intensity and high luminosity accelerator Kodai Matsuoka (Kyoto Univ.) for T2K muon monitor group.
New IP chamber for ATF2 goal 2 Philip Bambade Laboratoire de l’Accélérateur Linéaire Université Paris 11, Orsay, France ATF2 Technical Review KEK, 3-4.
Status of post-IP diamond sensor project for beam core and halo measurements S. Liu, P. Bambade, F. Bogard, P. Cornebise, V. Kubytskyi, C. Sylvia, A. Faus-Golfe,
Status of Beam loss Monitoring on CTF3 Results of Tests on LINAC and PETS as R&D for TBL Anne Dabrowski Northwestern University Thibaut Lefevre CERN CTF3.
ATF2 beam commissioning status and beam time request Toshiyuki Okugi 2008 / 11 / 12 ATF2 Commissioning Meeting.
Commissioning Status of Shintake Monitor (IP-BSM) T. Yamanaka, M. Oroku, Y. Yamaguchi, Y. Kamiya, S. Komamiya (Univ. of Tokyo), T. Okugi, N. Terunuma,
C. Fischer – LHC Instrumentation Review – 19-20/11/2001 Gas Monitors for Transverse Distribution Studies in the LHC LHC Instrumentation Review Workshop.
Diamond Sensor Diamond Sensor for Particle Detection Maria Hempel Beam Impact Meeting Geneva,
Proposal of Halo collimation system for ATF2 A.Faus-Golfe, N. Fuster-Martínez J. Resta-López (IFIC) P. Bambade, S. Liu, S. Wallon (LAL) 113/02/1417th ATF2.
Shan Liu, Philip Bambade, Sha Bai, Dou Wang, Illia Khvastunov ECFA, Hamburg, 29 May, 2013.
27 MAY 2008NANOBEAM A laser-wire scanner for the ATF extraction line Alexander Aryshev, Stewart Boogert, Grahame Blair, Gary Boorman a Lawrence.
Highlights and discussion at LAL FKPPL & FJPPL “Toshiko Yuasa” workshop Philip Bambade Laboratoire de l’Accélérateur Linéaire Université Paris 11, Orsay,
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
Design and Detailed Plan for In Vacuum Diamond Sensor for PHIL and ATF2 S. Liu, P. Bambade, F. Bogard, P. Cornebise, I. Khvastnov, H. Monard, C. Sylvia.
ATF2 Commissioning Toshiyuki Okugi 2008 / 7 /9 ATF2 beam commissioning meeting, KEK.
ATF2 background and beam halo study D. Wang(IHEP), S. Bai(IHEP), P. bambade(LAL) February 7, 2013.
28-May-2008Non-linear Beam Dynamics WS1 On Injection Beam Loss at the SPring-8 Storage Ring Masaru TAKAO & J. Schimizu, K. Soutome, and H. Tanaka JASRI.
Fast luminosity measurements and MDI questions for super B factories A_RD_8_2012 Philip Bambade LAL: P.B., F. Blampuy (grad. student), C. Rimbault (Acc.
A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C Medium Energy Physics Group Amrendra.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
ATF2 beam operation status Toshiyuki OKUGI, KEK The 9 th TB&SGC meeting KEK, 3-gokan Seminar Hall 2009/ 12/ 16.
DaMon: a resonator to observe bunch charge/length and dark current. > Principle of detecting weakly charged bunches > Setup of resonator and electronics.
Summary of Tuning, Corrections, and Commissioning ( Short summary of ATF2 meeting at SLAC in March 2007 ) and Hardware Issues for beam Tuning Toshiyuki.
Taikan SUEHARA et al., LCWS2007 & DESY, 2007/06/01 R&D Status of ATF2 IP Beam Size Monitor (Shintake Monitor) Taikan SUEHARA, H.Yoda, M.Oroku,
Simulation of the α, dispersion, coupling and β multiknobs in large β optics Sha Bai, Philip Bambade, Benoit Bolzon, Javier Resta Lopez
CNS CVD Diamond S. Michimasa. Properties of diamond Extreme mechanical hardness and extreme high thermal conductivity Broad optical transparency in region.
Philip Bambade, Pierre Barillon, Frédéric Bogard, Selma Conforti, Patrick Cornebise, Shan Liu, Illia Khvastunov Journée PHIL
C. Weiss 1, 2, G. Badurek 2, E. Berthoumieux 3, M. Calviani 1, E. Chiaveri 1, D. Dobos 1, E. Griesmayer 4,C. Guerrero 1,E. Jericha 2, F. Kaeppeler 5, H.
R&D ON POSITRON AND ELECTRON BEAMS FOR FUTURE COLLIDERS R.CHEHAB (IPNL) On behalf of I.Chaikovska (LAL), H.Guler (LAL), P.Bambade (LAL), O.Bianco (LAL),
Picosecond timing of high energy heavy ions with semiconductor detectors Vladimir Eremin* O. Kiselev**, I Eremin*, N. Egorov***, E.Verbitskaya* * Physical-Technical.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Status of ATF2 linear collider focus prototype emphasizing France-China joint contributions Philip Bambade Laboratoire de l’Accélérateur Linéaire Université.
LAL-IHEP collaboration on the linear collider final focus & ATF2 prototype Philip Bambade Laboratoire de l’Accélérateur Linéaire Université Paris 11, Orsay,
ATF2: Accelerator Test facility A.Jeremie LAPP: A.Jeremie LAL: P.Bambade, Shan Liu, S.Wallon, F.Bogard, O.Blanco, P.Cornebise, I. Khvastunov, V. Kubytskyi.
Nanometer stabilisation at ATF2 within FJPPL and FKPPL
Philip Bambade / LAL-Orsay Sha Bai / IHEP-Beijing
Alexander Aleksandrov Spallation Neutron Source Oak Ridge, USA
ATF2 post-IP Diamond Sensor Status
FCPPL, Clermont-Ferrand , 8-10 April, 2014
大強度
Background study plans : from to ILC
Vertical Beam Halo Study using Diamond Sensor. June 2015 ATF2
Junji Urakawa ( for collaborators ) March KEK at LNF
Hongbo Zhu (IHEP, Beijing) On behalf of the CEPC Study Group
The Gas Ionization Beam Size Monitor
Undulator Cavity BPM Status
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Diamond sensor for beam halo monitoring & collimation On-going work and plan for ATF2 Philip Bambade Laboratoire de l’Accélérateur Linéaire Université Paris 11, Orsay, France On behalf of and collaborating with: Sha Bai (IHEP), Frédéric Bogard, Jean-Noël Cayla, Angeles Faus-Golfe (IFIC), Nuria Fuster Martinez (PhD, IFIC), Illia Khvastunov (M2 st., Kiev), Shan Liu (PhD), Javier Resta Lopez (IFIC), ), Hugues Monard, Christophe Sylvia, Toshiaki Tauchi (KEK), Nobuhiro Terunuma (KEK), Sandry Wallon, Dou Wang (IHEP) LCWS13 Tokyo, 11-15 November 2013

Topics Beam halo  BSM background - measurement - collimation - modeling halo formation and re-generation Diamond sensor to measure beam halo and tails - features of diamonds - beam testing at PHIL (low energy photo-injector beam at Orsay) - design of in-vacuum diamond scanner for ATF2 and PHIL

Introduction Motivations: ATF2 Shintake Monitor Diamond Sensor Compton Motivations: Beam halo transverse distribution unknown → investigate halo model & propagation Monitor beam halo to control backgrounds by means of collimation and tuning Probe Compton recoil electron→ (possibly, in future, higher order contributions)

Analytical and simulation modeling of ATF beam halo shape: - beam gas scattering - beam gas bremstrahlung - intra-beam scattering Ex.: horizontal and vertical halo distribution from beam-gas scattering Dou Wang (IHEP) P=10-6 Pa P=10-7 Pa P=10-8 Pa Perfect vacuum

Beam halo and BSM background issues GEANT4 (simplified conditions) post-IP bend magnet vertical gap final doublet beam pipe chromatic correction c-band / ref. BPMs Halo intercepted on under study…

D d

D d

D d

D d

Present “collimator” used at ATF2 = tapered beam pipe between QD10BFF and QD10AFF Beam size at QD10BFF: σy = 328.85 um (in simulation) Beam pipe radius: R= 8mm Beam pipe should cut the beam at: R/ σy ≈ ±24 σ Post IP wire scanner (MPIP): 70 cm from IP Beam size at MPIP : σs = 235.6 um (in simulation) Measured beam size at MPIP: σm = 308.9 um (in measurement) Factor for betatron mismatch: k= σs /σm = 0.76 Predicted edge of cut at : 24 σ *k ≈ ±18 σ φ16 beam pipe on Mover

Halo Distribution at Post-IP Sha Bai (IHEP), Shan Liu (LAL) Data taken in April 2013 Data taken in June 2013 Edge of cutting almost at the same position -> -14σ -> Beam was not centered?

Phase Difference Tapered beam pipe MW1X-(Post-IP) Phase difference between tapered beam pipe and Post-IP wire scanner : 3π ∆ 𝜇 𝑦 =3𝜋

IP halo beam tapered beam pipe (“collimator’) “collimator” at 0mm (beam is not centered) Cut on downside “collimator” up Cut less on downside, edge moves down “collimator” down More Halo on two sides

Effect of “Collimator” Movement on Beam Core Shan Liu (LAL) Down by 4.5 mm, more halo on two sides Down : more concentrated in core & more halo Up : less concentrated in core, less halo downside, more halo upside

Effect of “Collimator” Movement on Beam Halo Shan Liu (LAL) -0.5mm -> much more halo +1 mm -> less halo generated -0.5mm +1mm Move the beam pipe down leads to more halo on both sides !

Nuria Fuster Martinez (IFIC)

Nuria Fuster Martinez (IFIC)

Diamond Detector Features ADVANTAGES Property Diamond Silicon Density (g m-3) Band gap (eV) Resistivity (Ω cm) Breakdown voltage (V cm -1) Electron mobility (cm2 V-1 s-1) Hole mobility (cm2 V-1 s-1) Saturation velocity (μm ns-1) Dielectric constant Neutron transmutation cross-section(mb) Energy per e-h pair (eV) Atomic number Av.min.ionizing signal per 100 μm (e) 3.5 5.5 >1012 107 1700 2100 141 (e-) 96 (hole) 5.6 3.2 13 6 3600 2.32 1.1 105 103 1500 500 100 11.7 80 3.6 14 8000 • Large band-gap⇒ low leakage current • High breakdown field • High mobility⇒ fast charge collection • Large thermal conductivity • High binding energy⇒ Radiation hardness Fast pulse ⇒ several ns Need very large dynamic range Total # Max. #/mm2 @ Sensor Charge signal/mm2 Beam 1010 6.16*107 1.6887μC Halo 107 2.24*104 61.376pC Compton 28340 5.2*102 1.4284pC High voltage side readout Low voltage side readout Shan Liu (LAL)

D d

Diamond Detector Test @ PHIL Test of fast remote readout (fast heliax coax cable + high BW scope) with particles at end of beam line, using existing single crystal 4.5x4.5mm CVD diamond pad sensor PHIL Electron Beam Parameters (given by Hugues Monard) Charge: up to 400 pC /bunch (1 bunch per RF pulse) ; Duration of Charge: 7 ps FWHM; Charge Stablility: < 2%; Maximum Energy: 5 MeV; Minimum Dispersion: < 1%; Beam Size -> few mm after exit In-vacuum single crystal CVD diamond sensor profile scanner -> for PHIL and ATF2 diagnostic (“plug compatible” design) Shan Liu (LAL)

Test without external shielding box R=2mm collimator Shan Liu, Illia Khvastunov (LAL)

Signal on top of dark current time, s Signal strength, V signal dark current Shan Liu, Illia Khvastunov (LAL)

Signal pulse develops tail for increasing beam charge time, s Signal strength, V 16 pC  108 electrons ( 10 times less on diamond with 2mm collimator) 100 m ¼ heliax coax + 24 dB attenuator before scope Shan Liu, Illia Khvastunov (LAL)

Beam size measurement with older diamond sensor YAG screen 8cm Dia. detector I Beam size mesurement using Diamond detector: YAG screen measured beam size : 4.45 mm ; Diamond size : 4.5X4.5 mm σx 2 = σm 2– (4.5/√12)2 , σm=4.757 mm -> detector measured beam size σx =4.57 mm Shan Liu (LAL)

CIVIDEC Amplifier MITEQ Amplifier 40 dB 20 dB +20dB Frequency Min. 0.01 (MHz) Frequency Max. 1000 Gain Minimum 20 (dB) Gain Flatness 0.75 (dB+/-) Noise Figure 3.4 Input VSWR 2:1  (Ratio) Output VSWR Output P1dB 14 (dBm) Voltage 1 Nom. 15 (V) Current 1 Typ. 60 (mA) Impedance 50 (Ohms) 40 dB MITEQ Amplifier 20 dB +20dB

 1 MIP from 90Sr β source Single electrons detection at PHIL ? (sensor displaced 7cm from beam axis) Shan Liu, Illia Khvastunov (LAL)

“Plug-compatible” design for ATF2 & PHIL Vacuum Chamber Moveable Stage Frédéric Bogard (LAL)

Issues & Prospects Several tests of diamond detector done in air at PHIL → more tests are planned to finalize details of the electronics Observe long tail for large signals from PHIL beam → due to electronics or other physics effects ? Issue of linearity… Using amplifier or attenuator with 1-2 GHz bandwidth, CIVIDEC diamond sensor measures signal from 1 to 108 electrons → S/N ratio of these measurements needs to be studied Two sets (diamond sensor + mechanics) will be ordered & prepared for application in vacuum → one for PHIL, another for ATF2. Plan test at PHIL early 2014 and install at ATF2 in June/July Proposal for horizontal & vertical moveable halo collimators being prepared with IFIC group Simulation (BDSIM, CMAD) and analytical work for halo modeling