Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Dipolar interactions and magnetoroton softening in spinor condensates Funded by NSF, DARPA, MURI, AFOSR, Harvard-MIT CUA Collaborators: Vladimir Gritsev.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Dipolar interactions in F=1 ferromagnetic spinor condensates. Roton instabilities and possible supersolid phase Eugene Demler Harvard University Funded.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
System and definitions In harmonic trap (ideal): er.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Novel quantum states in spin-orbit coupled quantum gases
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Chromium Dipoles in Optical Lattices
Presentation transcript:

Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou (PhD), G. Bismut (PhD), A. de Paz B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, M. Efremov (Theory), O. Gorceix (Group leader) Dipolar chromium BECs

Dipole-dipole interactions Anisotropic Long range Chromium (S=3): Van-der-Waals plus dipole-dipole interactions R Non local anisotropic mean-field Hydrodynamics Magnetization changing collisions Spinor properties

Hydrodynamics of a dipolar BEC

Relative strength of dipole-dipole and Van-der-Waals interactions Stuttgart: d-wave collapse, PRL 101, (2008) Stabilization by confinement arXiv: (2011)arXiv: Anisotropic explosion pattern reveals dipolar coupling. Stuttgart: Tune contact interactions using Feshbach resonances (Nature. 448, 672 (2007)) BEC collapses Parabolic ansatz still good. Striction of BEC. (Eberlein, PRL 92, (2004)) BEC stable despite attractive part of dipole-dipole interactions Cr: R

Interaction-driven expansion of a BEC A lie: Imaging BEC after time-of-fligth is a measure of in-situ momentum distribution Cs BEC with tunable interactions (from Innsbruck)) Self-similar, Castin-Dum expansion Phys. Rev. Lett. 77, 5315 (1996) TF radii after expansion related to interactions

Pfau,PRL 95, (2005) Modification of BEC expansion due to dipole-dipole interactions TF profile Eberlein, PRL 92, (2004) Striction of BEC (non local effect) (similar results in our group)

Frequency of collective excitations Consider small oscillations, then with In the Thomas-Fermi regime, collective excitations frequency independent of number of atoms and interaction strength: Pure geometrical factor (solely depends on trapping frequencies) (Castin-Dum) Interpretation Sound velocity TF radius

Collective excitations of a dipolar BEC Repeat the experiment for two directions of the magnetic field Parametric excitations Phys. Rev. Lett. 105, (2010) A small, but qualitative, difference (geometry is not all) Due to the anisotropy of dipole-dipole interactions, the dipolar mean-field depends on the relative orientation of the magnetic field and the axis of the trap

Bragg spectroscopy Probe dispersion law Quasi-particles, phonons Rev. Mod. Phys. 77, 187 (2005) Phys. Rev. Lett. 99, (2007) c is sound velocity c is also critical velocity Landau criterium for superfluidity healing length Bogoliubov spectrum

Bragg spectroscopy of an anisotropic superfluid    Moving lattice on BEC Lattice beams with an angle. Momentum exchange Resonance frequency gives speed of sound

Anisotropic speed of sound Width of resonance curve: finite size effects (inhomogeneous broadening) Speed of sound depends on the relative angle between spins and excitation

A 20% effect, much larger than the (~2%) modification of the mean-field due to DDI Anisotropic speed of sound An effect of the momentum-sensitivity of DDI TheoExp Parallel3.6 mm/s3.4 mm/s Perpendicular3 mm/s2.8 mm/s Good agreement between theory and experiment: (See also prediction of anisotropic superfluidity of 2D dipolar gases : Phys. Rev. Lett. 106, (2011))

Villetaneuse, PRL 105, (2010) Stuttgart, PRL 95, (2005) Collective excitations Striction Anisotropic speed of sound Villetaneuse A « non-standard superfluid »…

Non local anisotropic meanfield -Static and dynamic properties of BECs Small effects in Cr… Need Feshbach resonances or larger dipoles. With… ? Cr ? Er ? Dy ? Dipolar molecules ? Then…, Tc, solitons, vortices, Mott physics, new phases (checkboard, supersolid), 1D or 2D physics (rotons), breakdown of integrability in 1D…

Spinor properties

Spin degree of freedom coupled to orbital degree of freedom - Spinor physics and magnetization dynamics Dipole-dipole interactions R without with

B=0: Rabi In a finite magnetic field: Fermi golden rule

Important to control magnetic field Rotate the BEC ? Spontaneous creation of vortices ? Einstein-de-Haas effect Angular momentum conservation Dipolar relaxation, rotation, and magnetic field Ueda, PRL 96, (2006) Santos PRL 96, (2006) Gajda, PRL 99, (2007) B. Sun and L. You, PRL 99, (2007)

Interpartice distance Energy R c = Condon radius From the molecular physics point of view PRA 81, (2010)

Energy scale, length scale, and magnetic field Chemical potential : 1 kHz.3 mG Inelastic dipolar mean-field Molecular binding enery : 10 MHz Magnetic field = 3 G ( is the scattering length) Inhibition of dipolar relaxation due to inter-atomic (VdW) repulsion 30 mG Band excitation in lattice : 100 kHz ( is the harmonic oscillator size) Suppression of dipolar relaxation in optical lattices

3 Gauss …spin-flipped atoms gain so much energy they leave the trap Suppression of dipolar relaxation due to inter-atomic repulsion

Dipolar relaxation in a Cr BEC Produce BEC m=-3 detect BEC m=-3 Rf sweep 1Rf sweep 2 BEC m=+3, vary time See also Shlyapnikov PRL 73, 3247 (1994) Born approximation Pfau, Appl. Phys. B, 77, 765 (2003) Fermi golden rule

Determination of Cr scattering lengths Zero coupling Determination of scattering lengths S=6 and S=4 (coll. Anne Crubellier) In Out Interpartice distance Energy R c = Condon radius PRA 81, (2010) Feshbach resonance in d-wave PRA 79, (2009) a 6 = 103 ± 4 a 0. a 6 = ± 0.4 a 0 B(G) 

A probe of long-range correlations : here, a mere two-body effect, yet unacounted for in a mean-field « product-ansatz » BEC model Dipolar relaxation: measuring non-local correlations L. H. Y. Phys. Rev. 106, 1135 (1957)

30 mGauss …spin-flipped atoms go from one band to another Spin relaxation and band excitation in optical lattices

Reduction of dipolar relaxation in optical lattices Load the BEC in a 1D or 2D Lattice Produce BEC m=-3 detect m=-3 Rf sweep 1Rf sweep 2 BEC m=+3, vary time Load optical lattice One expects a reduction of dipolar relaxation, as a result of the reduction of the density of states in the lattice

PRA 81, (2010) Phys. Rev. Lett. 106, (2011)

What we measure in 1D: Non equilibrium velocity ditribution along tubes Population in different bands due to dipolar relaxation Phys. Rev. Lett. 106, (2011) Energy released Band excitation Kinetic energy along tubes « Band mapping »

(almost) complete suppression of dipolar relaxation in 1D at low field B. Pasquiou et al., Phys. Rev. Lett. 106, (2011) Energy released Band excitation Kinetic energy along tubes

(almost) complete suppression of dipolar relaxation in 1D at low field in 2D lattices: a consequence of angular momentum conservation Above threshold : should produce vortices in each lattice site (EdH effect) (problem of tunneling) Towards coherent excitation of pairs into higher lattice orbitals ? (Rabi oscillations) Below threshold: a (spin-excited) metastable 1D quantum gas ; Interest for spinor physics, spin excitations in 1D…

.3 mGauss …spin-flipped atoms loses energy Similar to M. Fattori et al., Nature Phys. 2, 765 (2006) at large fields and in the thermal regime Magnetization dynamics of spinor condensates

S=3 Spinor physics with free magnetization - Up to now, spinor physics with S=1 and S=2 only - Up to now, all spinor physics at constant magnetization (exchange interactions, no dipole-dipole interactions) - They investigate the ground state for a given magnetization -> Linear Zeeman effect irrelavant 0 1 New features with Cr - First S=3 spinor (7 Zeeman states, four scattering lengths, a 6, a 4, a 2, a 0 ) - Dipole-dipole interactions free total magnetization - Can investigate the true ground state of the system (need very small magnetic fields)

Single vs multi- component non-interacting Bose thermodynamics PRL 77, 4984 (1996) PRA, 59, 1528 (1999) Single component: Multi-component, true (i.e. magnetization is free) thermodynamic equilibrium: Non-interacting BEC is always ferromagnetic (only linear Zeeman effect included here)

Magnetization-fixed Bose thermodynamics When magnetization is fixed (negligible dipole-dipole interactions), the system does not go to its true thermodynamic equilibium, but to an equilibrium for a fixed magnetization Chemical potential Magnetic-chemical potential (fixes magnetization) J. Phys. Soc. Jpn, 69, 12, 3864 (2000)

Magnetization-free vs magnetization-fixed Bose thermodynamics Three possible phases: A: Thermal gas B: a BEC only in the majority component C: a multi-component BEC (a BEC component in all Zeeman states) 0 1 Reduction of Tc due to more degrees of freedom (only linear Zeeman effect included here)

Thermodynamics: a BEC is ferromagnetic BEC only in m S =-3 Cloud spontaneously polarizes !

Thermodynamics: phase diagram of a ferromagnetic BEC Measure T c (B) and M(T c,B) for different magnetic fields B Get T c (M) Quasi- Boltzmann distribution Bi-modal spin distribution The C (spinor-)phase is always avoided !

Spin thermometry, and new cooling method ? a bi-modal spin distribution We measure spin-temperature by fitting (in practice) a Boltzmann distribution to the m S population Only thermal gas depolarizes… get rid of it ? (field gradients)

Below a critical magnetic field: the BEC ceases to be ferromagnetic !

Thermodynamics near B=0 B=0 B=20 mG -Magnetization remains small even when the condensate fraction approaches 1 !! Obervation of a depolarized condensate !! Necessarily an interaction effect

Cr spinor properties at low field Santos PRL 96, (2006) Phases set by contact interactions (a 6, a 4, a 2, a 0 ) – differ by total magnetization Large magnetic field : ferromagneticLow magnetic field : polar/cyclic Ho PRL. 96, (2006) -2 -3

At VERY low magnetic fields, spontaneous depolarization quantum gases Produce BEC m=-3 Rapidly lower magnetic field Stern Gerlach experiments 1 mG 0.5 mG 0.25 mG « 0 mG » Magnetic field control below.5 mG (dynamic lock, fluxgate sensors) (.1mG stability) (no magnetic shield…) Phys. Rev. Lett. 106, (2011)

Mean-field effect BECLattice Critical field0.26 mG1.25 mG 1/e fitted0.4 mG1.45 mG Load into deep 2D optical lattices to boost density. Field for depolarization depends on density Phys. Rev. Lett. 106, (2011)

Dynamics analysis Meanfield picture : Spin(or) precession (Majorana flips) PRL 96, (2006) Phys. Rev. A 82, (2010) Natural timescale for depolarization: The timescale is slower in the lattice, because the cloud swells when loaded in the lattice (mean-field repulsion), and the dipolar mean-field is long-ranged… An intersite inelastic effect… PRL 106, (2011)

A quench through a zero temperature (quantum) phase transition Santos and Pfau PRL 96, (2006) Diener and Ho PRL. 96, (2006) Phases set by contact interactions, magnetization dynamics set by dipole-dipole interactions « quantum magnetism » - Operate near B=0. Investigate absolute many-body ground-state -We do not (cannot ?) reach those new ground state phases -Quench should induce vortices… -Role of thermal excitations ? -Metastable state Also new physics in 1D: Polar phase is a singlet-paired phase Shlyapnikov-Tsvelik NJP, 13, (2011)

!! Depolarized BEC likely in metastable state !!

Conclusion Collective excitations – effect of non-local mean-field Bragg excitations – anisotropic speed of sound Dipolar relaxation in BEC – new measurement of Cr scattering lengths non-local correlations Dipolar relaxation in reduced dimensions - towards Einstein-de-Haas rotation in lattice sites Spinor thermodynamics with free magnetization – application to thermometry Spontaneous demagnetization in a quantum gas - New phase transition – first steps towards spinor ground state

G. Bismut (PhD), B. Pasquiou (PhD), A. de Paz B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, M. Efremov (Theory), O. Gorceix (Group leader)