Autumn 2004
WP1 : Comparison between regenerations NEE GP NEE (micromoleCO 2 /m 2 /s) GP(micromoleCO 2 /m 2 /s) RTOT(micromoleCO 2 /m 2 /s) Difference statistically significant between the three situations with the Kolmogorov Smirnov test. advanced recent Bare peat Total respiration
Plot 3 Plot 1 WP1 : Seasonal variation of the vegetation Seasonal variation of the average surface of photosynthesis (mm 2 ) E. angustifolium Julian day Variation of the number of leaves (recent regeneration : E. angustifolium) Variation of the total surface of Photosynthesis (m²) Seasonal variation of the average surface of photosynthesis (mm 2 ) E. vaginatum Julian day
Seasonal variation of the vegetation LAI of E. angustifolium (m²/m²) in recent regeneration Julian Day LAI of E. vaginatum, C. nigra, V. oxycoccos (m²/m²) in advanced regeneration Density*surface covered by Sphagnum sp. and P. strictum in recent regeneration Density*surface covered by Sphagnum sp. and P. strictum in advanced regeneration
WP1 : Le Russey, Rtot=f(temperature) Y=a*e bTair Tair Recent and advanced T10cm Y=a*e bT10cm RTOT(micromoleCO 2 /m 2 /s) Recent and advanced
Model equations for recent and advanced regenerations GPM=GPMTo*exp(-(((Tair-To)/i)^2)) GP=(GPM*(LAI+g*(Ss*Ds+Sp*Dp)*H))+h R=Ra+Rh Ra=a*(LAI+c*(Ss*Ds+Sp*Dp)*H)*exp(b*Tair) Rh=d*exp(e*(-WT))*exp(f*Tair) NEE=GP-R Variables LAI= Leaf area index for vascular plants Ss= surface covered by Sphagnum sp Ds= density/density max per Sphagnum sp Sp= surface covered by Polytrichum Strictum Dp= density/density max per Polytrichum Strictum Tair= air temperature measured in the chamber WT= Water table level H= Humidity / Humidity max (index 5) Simulation of CO 2 fluxes for recent and advanced regeneration
Advanced regeneration : NEE Recent regeneration : NEE NEE simulated(micromoleCO 2 /m²/s) NEE measured NEE simulated(micromoleCO 2 /m²/s) NEE measured Recent regeneration Advanced regeneration R² GPMTopt Topt i g h a E-05 c b e f d Values of parameters established by the software Simulation of CO 2 fluxes for recent and advanced regeneration
Model equations adapted for the bare peat situation, with the total respiration. R=a*(-WT)^2+b*(-WT)+c*exp(f*Tair) Variables Tair= air temperature measured in the chamber WT= Water table level Bare peat :Rtot Rtot simulated (micromoleCO 2 /m²/s) Rtot measured Simulation of CO 2 fluxes for the bare peat situation Bare peat R²0.82 a b c f Values of parameters established by the software
Diurnal variation of CO 2 20/05/2004R 2 =0.88recent regeneration26/04/2005R 2 =0.97advanced regeneration ParameterValueStdErrParameterValueStdErr K1.92E E+01K1.38E E+01 A-4.92E E-03A-6.38E E-03 B2.97E E-02B3.99E E-02 C9.36E E-02C9.87E E-02 D3.55E E-03D4.90E E-03 Topt3.01E+01 Topt3.13E+01 GPM254.34E+00 GPM255.98E+00 R252.27E+00 R253.36E+00 Q1O1.43 Q1O1.63 Recent regeneration Advanced regeneration Par (micromole/m 2 /s ) NEE (micromoleCO 2 /m 2 /s) sink source NEE measured NEE simulated
WP1 : Methane measurement
WP1 : Le Russey, methane fluxes Seasonal variation of CH 4 fluxes per plot (recent regeneration) Variability between plots. first prelevement with the lowest water table level. Bare peat situation : Day 178 : 4,4nmoleCH 4 /m²/s Then, WT = 0, no more fluxes. nmoleCH 4 /m²/s Seasonal variation of CH 4 fluxes per plot (advanced regeneration)