TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Delivery and Forwarding.

Slides:



Advertisements
Similar presentations
Delivery and Forwarding of
Advertisements

1 Chapter 22 Network layer Delivery, Forwarding and Routing.
首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
Chapter 18 Introduction to Network Layer 18.# 1
纺纱学. 2 绪 论 基本要求:了解纺纱系统的类别 重点掌握:棉纺系统的工艺流程 3 一、纺纱原理与设备 纺纱:用物理或机械的方法将纺织纤维纺成纱 线的过程。 纺纱原理:初加工、原料的选配、开松除杂、 混和、梳理、精梳、并合、牵伸、加捻、卷绕等。 纺纱方法:传统纺纱方法、新型纺纱方法。 纺纱设备:开清棉联合机、梳棉机、精梳机、
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
DCN 多核防火墙快速配置之 目的 NAT 配置 神州数码网络 蒋忠平.
实验:验证牛顿第二定律. 1 、实验目的:探究 a 与 F 、 m 的定量关系 2 、实验原理:控制变量法 A 、 m 一定时,探究 a 随 F 的变化关系 B 、 F 一定时, 探究 a 随 m 的变化关系.
主要内容  LR(0) 分析. 0 S→  E # E→  E+T E→  T T→  id T→  ( E ) 1 S→E  # E→E  +T 5 T→id  3 E→E+  T T→  id T→  (E) 4 E→E+T  9 E→T  6 T→(  E) E→
Alexa 排名与 分级信息检索方法 刘骥 刘骥 前言 前言 从促进文献信息的广泛交流, Alexa 网站 排名知识和信息检索,利用网络资源促进利 互联网进行科学研究和提高效率和效益出发。 就 Alexa 网站、 Alexa 排名和分级信息检索方 法进行了阐述。对信息资源的利用、开放获.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
1 学籍归档工作 年学籍归档工作安排 从 2008 年开始,改为按届移交档案 从 2008 年开始,改为按届移交档案 今年的归档工作范围: 今年的归档工作范围: 2014 年应届毕业班级 2014 年应届毕业班级 2014 年办理毕业证的往届生。 2014 年办理毕业证的往届生。 整理内容:根据.
Delivery, Forwarding, and Routing
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
TCP/IP Protocol Suite 1 Chapter 6 Upon completion you will be able to: Delivery, Forwarding, and Routing of IP Packets Understand the different types of.
 符号表  标识符的作用: 声明部分:定义了各种对象及对应的属性和 使用规则。 程序体:对所定义的对象进行各种操作。 $ididname IdnameAttributeIR  必要性 Token : 新表-符号表(种类、类型等信息):
TCP/IP Protocol Suite 1 Chapter 6 Upon completion you will be able to: Delivery, Forwarding, and Routing of IP Packets Understand the different types of.
TCP/IP Protocol Suite 1 Chapter 6 Upon completion you will be able to: Delivery, Forwarding, and Routing of IP Packets Understand the different types of.
首 页 首 页 上一页 下一页 本讲内容本讲内容 视图,剖视图(Ⅰ) 复习: P107 ~ P115 作业: P48(6-2,6-4), P49( 去 6-6) P50, P51(6-13), P52 P50, P51(6-13), P52 P53 (6-18,6-20) P53 (6-18,6-20)
22.1 Chapter 22 Network Layer: Delivery, Forwarding, and Routing Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 8 Address Resolution Protocol.
18-WAN Technologies and Dynamic routing Dr. John P. Abraham Professor UTPA.
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The OSI Model and the TCP/IP.
Copyright © Lopamudra Roychoudhuri
电子商务实务 项目四 B2B 交易 目标 1 、了解 B2B 交易的基本流程 2 、熟练掌握平台 B2B 交易相关操作 3 、掌握电子商务技能鉴定培训平台交易大厅相关操作 4 、了解 B2B 的方式及其特点 5 、了解 B2B 平台的类型及其特点 6 、熟悉目前典型的 B2B 第三方支付平台及特点.
Delivery, Forwarding, and Routing of IP Packets
Dr. Clincy1 Chapter 6 Delivery & Forwarding of IP Packets Lecture #4 Items you should understand by now – before routing Physical Addressing – with in.
Spring Routing & Switching Umar Kalim Dept. of Communication Systems Engineering 27/03/2007.
© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—3-1 Determining IP Routes Enabling RIP.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2003 Chapter 6 Delivery and Routing of IP Packets.
Computer Networks and Internets 《计算机网络与因特网》课件 林坤辉
Chapter 18 Introduction to Network Layer Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 6 Delivery and Forwarding of IP Packets
Border Gateway Protocol Route Summarization © 2003, Cisco Systems, Inc. All rights reserved. 1.
Delivery, Forwarding, and Routing of IP Packets
© 1999, Cisco Systems, Inc. ICND—10-1 Chapter 8 IP 访问控制列表.
项目七: PLC 功能指令应用 带进位循环左移指令 XXXXX. 项目七: PLC 功能指令应用 FX2 系列可编程控制器移位控制指令有移位、循环移位、字移位 及先进先出 FIFO 指令等 10 条指令。 带进位循环右移指令 RCR 带进位循环左移指令 RCL 字右移位指令 WSFR 先入先出读出指令.
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
超星数字图书馆 一、页面的使用 进入数字图书馆网页 下载超星阅读器 查找图书.
表单自定义 “ 表单自定义 ” 功能是用于制作表单的 工具,用数飞 OA 提供的表单自定义 功能能够快速制作出内容丰富、格 式规范、美观的表单。
OSPF. OSPF 协议概述 链路状态信息 RTA RTC RTD RTB 链路状态数据库 每台路由器会将当前正确的链路状态信息向一定 的范围内的所有主机发送 它支持区域的概念,同一区域内的路由器最终都 可以拥有对此区域相同的拓扑描述 每台路由器接收到此信息之后,根据最短路径算 法计算最优的下一跳.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
1 Kyung Hee University Chapter 6 Delivery Forwarding, and Routing of IP Packets.
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
目标与要求: 让学生了解材料美是布的基本特点,利 用布的特点进行创作,培养学生的创新和实 践能力。
开放教育学员入学须知 第一部分:浏览山东理工大学远程与继续 教育学院网站浏览山东理工大学远程与继续 教育学院网站 第二部分:浏览中央电大教学平台浏览中央电大教学平台 第三部分:浏览山东电大教学平台浏览山东电大教学平台 第四部分:浏览淄博电大教学平台浏览淄博电大教学平台 第五部分:淄博电大教学平台使用淄博电大教学平台使用.
登陆数据录入明细申报生成汇总申报扣款 输入计算机编码及 密码即可登陆系统. 登陆数据录入明细申报生成汇总申报扣款.
感谢您的关注 联系电话: – 677 手机: QQ :
一、 版 面 构 成 的 概 念 版 面 构 成 的 概 念 二、 版 面 构 成 的 发 展 趋 势 版 面 构 成 的 发 展 趋 势 三、 广 告 文 字 的 版 面 构 成 广 告 文 字 的 版 面 构 成 四、 广 告 版 面 的 视 觉 流 程 广 告 版 面 的 视 觉 流 程.
U niversity of S cience and T echnology of C hina VxWorks 及其应用开发 陈香兰 年 7 月.
如何开展新学期 “ 导学课 ”. 如何组织 导学课 遇到问题 联系谁 导学课 基本内容 123 目录.
Implementing BGP Selecting a BGP Path. BGP Path Attributes BGP metrics are called path attributes. Characteristics of path attributes include: –Well-known(
1 第三章 数列 数列的概念 考点 搜索 ●数列的概念 ●数列通项公式的求解方法 ●用函数的观点理解数列 高考 猜想 以递推数列、新情境下的 数列为载体, 重点考查数列的通 项及性质, 是近年来高考的热点, 也是考题难点之所在.
Delivery and Forwarding Chapter 18 COMP 3270 Computer Networks Computing Science Thompson Rivers University.
目录 上页 下页 返回 结束 二、无界函数反常积分的审敛法 * 第五节 反常积分 无穷限的反常积分 无界函数的反常积分 一、无穷限反常积分的审敛法 反常积分的审敛法  函数 第五章 第五章.
22.1 Network Layer Delivery, Forwarding, and Routing.
TCP/IP Protocol Suite 1 Chapter 6 Upon completion you will be able to: Delivery, Forwarding, and Routing of IP Packets Understand the different types of.
Behrouz A. Forouzan TCP/IP Protocol Suite, 3rd Ed.
5 Network Layer Part II Computer Networks Tutun Juhana
UNIT III ROUTING.
Delivery, Forwarding, and Routing
Internet Protocol Version4
Delivery, Forwarding, and Routing of IP Packets
Delivery and Forwarding of
18-WAN Technologies and Dynamic routing
Delivery, Forwarding, and Routing of IP Packets
Example 9 (Continued) 1. The first mask (/26) is applied to the destination address. The result is , which does not match the corresponding network.
Figure 6.11 Configuration for Example 4
Figure 6.6 Default routing
Presentation transcript:

TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Delivery and Forwarding of IP Packets

TCP/IP Protocol Suite 2OBJECTIVES:  To discuss the delivery of packets in the network layer and distinguish between direct and indirect delivery.  To discuss the forwarding of packets in the network layer and distinguish between destination-address–based forwarding and label-based forwarding.  To discuss different forwarding techniques, including next-hop, network-specific, host-specific, and default.  To discuss the contents of routing tables in classful and classless addressing and some algorithms used to search the tables.  To introduce MPLS technology and show how it can achieve label based forwarding.  To list the components of a router and explain the purpose of each component and their relations to other components.

TCP/IP Protocol Suite 3 Chapter Outline 6.1 Delivery 6.2 Forwarding 6.3 Structure of a Router

TCP/IP Protocol Suite DELIVERY The network layer supervises the handling of the packets by the underlying physical networks. We define this handling as the delivery of a packet. The delivery of a packet to its final destination is accomplished using two different methods of delivery: direct and indirect.

TCP/IP Protocol Suite 5 Topics Discussed in the Section Direct Delivery Indirect Delivery

TCP/IP Protocol Suite 6 直接交付 源节点与目的节点在同一个物理网络上 最后一个路由器与目的节点间的交付

TCP/IP Protocol Suite 7 Figure 6.1 Direct delivery

TCP/IP Protocol Suite 8 间接交付 目的节点与交付者不在同一个网络 ( 相当于 转发 )

TCP/IP Protocol Suite 9 Figure 6.2 Indirect delivery

TCP/IP Protocol Suite FORWARDING Forwarding means to place the packet in its route to its destination. Since the Internet today is made of a combination of links (networks), forwarding means to deliver the packet to the next hop (which can be the final destination or the intermediate connecting device). Although the IP protocol was originally designed as a connectionless protocol, today the tendency is to use IP as a connection-oriented protocol.

TCP/IP Protocol Suite 11 Topics Discussed in the Section Forwarding Based on Destination Address Forwarding Based on Label

TCP/IP Protocol Suite 12 下一跳方法 (next hop method) 路由表中只保留下一跳地址 各路由器的路由表须保持一致

TCP/IP Protocol Suite 13 Figure 6.3 Next-hop method

TCP/IP Protocol Suite 14 特定网络方法 (network-specific method) 路由表中仅保留目的网络的地址 连接在同一个网络的所有主机目的地址相 同

TCP/IP Protocol Suite 15 特定主机方法 (host-specific method) 目的主机地址在路由表中须列出

TCP/IP Protocol Suite 16 Figure 6.4 Network-specific method

TCP/IP Protocol Suite 17 Figure 6.5 Host-specific routing

TCP/IP Protocol Suite 18 默认方法 (default method) 未知目的地址转发地:默认路由器

TCP/IP Protocol Suite 19 Figure 6.6 Default routing

TCP/IP Protocol Suite 20 使用分类地址时的转发 无子网划分的转发 有子网划分的转发

TCP/IP Protocol Suite 21 无子网划分的转发 (1) 路由表按地址分类分列 (A,B,C,D) 路由表表项至少包括:  目的网络的网络地址 ( 使用特定网络转发方法 )  下一跳地址 ( 分组交付 )  接口号 ( 分组转发 )

TCP/IP Protocol Suite 22 无子网划分的转发 (2) 转发模块工作步骤:  提取分组目的地址  确定地址类别  确定目的地址  依据地址类别与目的地址查找相应路由表 如有匹配,提取相应下一跳地址与接口号 如未发现匹配,使用默认路由  将下一跳地址和接口号交 ARP 模块

TCP/IP Protocol Suite 23 Figure 6.7 Simplified forwarding module in classful address without subnetting

TCP/IP Protocol Suite 24 Figure 6.8 shows an imaginary part of the Internet. Show the routing tables for router R1. Solution Figure 6.9 shows the three tables used by router R1. Note that some entries in the next-hop address column are empty because in these cases, the destination is in the same network to which the router is connected (direct delivery). In these cases, the next-hop address used by ARP is simply the destination address of the packet as we will see in Chapter 8. Example Example 6.1

TCP/IP Protocol Suite 25 Figure 6.8 Configuration for routing, Example 6.1

TCP/IP Protocol Suite 26 Figure 6.9 Tables for Example 6.1

TCP/IP Protocol Suite 27 Router R1 in Figure 6.8 receives a packet with destination address Show how the packet is forwarded. Solution The destination address is A copy of the address is shifted 28 bits to the right. The result is or 12. The destination network is class C. The network address is extracted by masking off the leftmost 24 bits of the destination address; the result is The table for Class C is searched. The network address is found in the first row. The next-hop address and the interface m0 are passed to ARP (see Chapter 8). Example Example 6.2

TCP/IP Protocol Suite 28 Router R1 in Figure 6.8 receives a packet with destination address Show how the packet is forwarded. Solution The destination address in binary is A copy of the address is shifted 28 bits to the right. The result is or 10. The class is B. The network address can be found by masking off 16 bits of the destination address, the result is The table for Class B is searched. No matching network address is found. The packet needs to be forwarded to the default router (the network is somewhere else in the Internet). The next-hop address and the interface number m0 are passed to ARP. Example Example 6.3

TCP/IP Protocol Suite 29 有子网划分的转发 使用分类编址时,子网划分发生在一个单 位的内部,即体现在一个单位的路由器的 路由表上

TCP/IP Protocol Suite 30 有子网划分的转发 转发模块工作步骤:  提取分组目的地址  如目的地址与路由表中任意一个特定主机表 项匹配,从表中提取出下一跳地址和接口号  使用目的地址和掩码提取子网地址  使用子网地址搜索路由表,查找下一跳地址 和接口号 如不匹配,则使用默认的  将下一跳地址和接口号交 ARP 模块

TCP/IP Protocol Suite 31 Figure 6.10 Simplified forwarding module in classful address with subnetting

TCP/IP Protocol Suite 32 Figure 6.11 shows a router connected to four subnets. Note several points. First, the site address is /16 (a class B address). Every packet with destination address in the range to is delivered to the interface m4 and distributed to the final destination subnet by the router. Second, we have used the address x.y.z.t/n for the interface m4 because we do not know to which network this router is connected. Third, the table has a default entry for packets that are to be sent out of the site. The router is configured to apply the subnet mask /18 to any destination address. Example Example 6.4

TCP/IP Protocol Suite 33 Figure 6.11 Configuration for Example 6.4

TCP/IP Protocol Suite 34 The router in Figure 6.11 receives a packet with destination address Show how the packet is forwarded. Solution The mask is /18. After applying the mask, the subnet address is The packet is delivered to ARP (see Chapter 8) with the next-hop address and the outgoing interface m0. Example Example 6.5

TCP/IP Protocol Suite 35 A host in network in Figure 6.11 has a packet to send to the host with address Show how the packet is routed. Solution The router receives the packet and applies the mask (/18). The network address is The table is searched and the address is not found. The router uses the address of the default router (not shown in figure) and sends the packet to that router. Example Example 6.6

TCP/IP Protocol Suite 36 使用无分类编址时的转发 地址没有类别 每个涉及到的地址块须在路由表中有一行 相应信息 在路由表项中增加掩码 掩码 子网地址 下一跳地址 接口号

TCP/IP Protocol Suite 37 In classful addressing we can have a routing table with three columns; in classless addressing, we need at least four columns. Note

TCP/IP Protocol Suite 38 Figure 6.12 Simplified forwarding module in classless address

TCP/IP Protocol Suite 39 Make a routing table for router R1 using the configuration in Figure Solution Table 6.1 shows the corresponding table Example Example 6.7

TCP/IP Protocol Suite 40 Figure 6.13 Configuration for Example 6.7

TCP/IP Protocol Suite 41

TCP/IP Protocol Suite 42 Show the forwarding process if a packet arrives at R1 in Figure 6.13 with the destination address Solution The router performs the following steps: 1.The first mask (/26) is applied to the destination address. The result is , which does not match the corresponding network address. 2.The second mask (/25) is applied to the destination address. The result is , which matches the corresponding network address. The next-hop address (the destination address of the packet in this case) and the interface number m0 are passed to ARP (see Chapter 8) for further processing. Example Example 6.8

TCP/IP Protocol Suite 43 Show the forwarding process if a packet arrives at R1 in Figure 6.13 with the destination address Solution The router performs the following steps: 1.The first mask (/26) is applied to the destination address. The result is , which does not match the corresponding network address (row 1). 2.The second mask (/25) is applied to the destination address. The result is , which does not match the corresponding network address (row 2). 3. The third mask (/24) is applied to the destination address. The result is , which matches the corresponding network address. Example Example 6.9

TCP/IP Protocol Suite 44 Show the forwarding process if a packet arrives at R1 in Figure 6.13 with the destination address Solution This time all masks are applied to the destination address, but no matching network address is found. When it reaches the end of the table, the module gives the next-hop address and interface number m2 to ARP (see Chapter 8). This is probably an outgoing package that needs to be sent, via the default router, to someplace else in the Internet. Example Example 6.10

TCP/IP Protocol Suite 45 Now let us give a different type of example. Can we find the configuration of a router if we know only its routing table? The routing table for router R1 is given in Table 6.2. Can we draw its topology? Solution We know some facts but we don ’ t have all for a definite topology. We know that router R1 has three interfaces: m0, m1, and m2. We know that there are three networks directly connected to router R1. We know that there are two networks indirectly connected to R1. There must be at least three other routers involved (see next-hop column). We do not know if network is connected to router R3 directly or through a point-to-point network (WAN) and another router. Figure 6.14 shows our guessed topology. Example Example 6.11

TCP/IP Protocol Suite 46

TCP/IP Protocol Suite 47 Figure 6.14 Guessed topology for Example 6.11

TCP/IP Protocol Suite 48 地址聚合 (address aggregation) 将多个连续的地址块合并为更大的地址块

TCP/IP Protocol Suite 49 Figure 6.15 Address aggregation

TCP/IP Protocol Suite 50 最长掩码匹配 (longest mask matching) 路由表按照从最长掩码到最短掩码进行排 序

TCP/IP Protocol Suite 51 Figure 6.16 Longest mask matching

TCP/IP Protocol Suite 52 多级 ( 也称为层次 ) 路由选择 将等级概念应用于路由表

TCP/IP Protocol Suite 53 As an example of hierarchical routing, let us consider Figure A regional ISP is granted 16,384 addresses starting from The regional ISP has decided to divide this block into 4 subblocks, each with 4096 addresses. Three of these subblocks are assigned to three local ISPs, the second subblock is reserved for future use. Note that the mask for each block is /20 because the original block with mask /18 is divided into 4 blocks. Example Example 6.12

TCP/IP Protocol Suite 54 Figure 6.17 Hierarchical routing with ISPs

TCP/IP Protocol Suite 55 基于标记 ( 也称为标签 ) 的转发 无连接的网络,路由器根据分组的目的地 址来转发该分组 面向连接的网络,路由器根据分组的标记 来转发该分组

TCP/IP Protocol Suite 56 Figure 6.18 shows a simple example of searching in a routing table using the longest match algorithm. Although there are some more efficient algorithms today, the principle is the same. When the forwarding algorithm gets the destination address of the packet, it needs to delve into the mask column. For each entry, it needs to apply the mask to find the destination network address. It then needs to check the network addresses in the table until it finds the match. The router then extracts the next hop address and the interface number to be delivered to the ARP protocol for delivery of the packet to the next hop. Example Example 6.13

TCP/IP Protocol Suite 57 Figure 6.18 Example 6.13: Forwarding based on destination address

TCP/IP Protocol Suite 58 Figure 6.19 shows a simple example of using a label to access a switching table. Since the labels are used as the index to the table, finding the information in the table is immediate. Example Example 6.14

TCP/IP Protocol Suite 59 Figure 6.19 Example 6.14: Forwarding based on label

TCP/IP Protocol Suite 60 MPLS(Multi-Protocol Label Switching) IP 协议是无连接的 MPLS 协议在 IP 分组前增加一个 “MPLS 首部 ” ( 对 IPv4, 将 IPv4 分组作为净载荷封装到 MPLS 分组中 )

TCP/IP Protocol Suite 61 Figure 6.20 MPLS header added to an IP packet

TCP/IP Protocol Suite 62 Figure 6.21 MPLS header made of stack of labels

TCP/IP Protocol Suite STRUCTURE OF A ROUTER In our discussion of forwarding and routing, we represented a router as a black box that accepts incoming packets from one of the input ports (interfaces), uses a routing table to find the output port from which the packet departs, and sends the packet from this output port. In this section we open the black box and look inside. However, our discussion won ’ t be very detailed; entire books have been written about routers. We just give an overview to the reader.

TCP/IP Protocol Suite 64 Topics Discussed in the Section Components

TCP/IP Protocol Suite 65 Figure 6.22 Router components

TCP/IP Protocol Suite 66 Figure 6.23 Input port

TCP/IP Protocol Suite 67 Figure 6.24 Output port

TCP/IP Protocol Suite 68 Figure 6.25 Crossbar switch

TCP/IP Protocol Suite 69 Figure 6.26 A banyan switch

TCP/IP Protocol Suite 70 Figure 6.27 Examples of routing in a banyan switch

TCP/IP Protocol Suite 71 Figure 6.28 Batcher-banyan switch