Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ 07458 All.

Slides:



Advertisements
Similar presentations
OBJECTIVES After studying Chapter 17, the reader should be able to: Prepare for ASE Electrical/Electronic Systems (A6) certification test content area.
Advertisements

Automotive Batteries.
ELECTRICAL I LESSON 2 BATTERY SERVICE
© Goodheart-Willcox Co., Inc. Permission granted to reproduce for educational use only Publisher The Goodheart-Willcox Co., Inc. Tinley Park, Illinois.
General Motors Hybrid Vehicles 15 © 2013 Pearson Higher Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Hybrid and Alternative Fuel.
Instructor Name: (Your Name)
Battery Testing & Service
Hybrid Auxiliary and High-Voltage Batteries 07 © 2013 Pearson Higher Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Hybrid and Alternative.
Funny battery video 0C6wvCcPo4&feature=related.
© 2012 Delmar, Cengage Learning Battery Service Chapter 27.
VAT: Volt Ampere Tester
Circuit Testers and Digital Meters 22 Introduction to Automotive Service James Halderman Darrell Deeter © 2013 Pearson Higher Education, Inc. Pearson Prentice.
Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey All rights reserved. Advanced Engine Performance Diagnosis, Fourth.
Circuit Testers and Digital Meters
Automotive Batteries.
Battery Principles.
Automotive Fuel and Emissions Control Systems 3/e By James D. Halderman Copyright © 2012, 2009, 2006 Pearson Education, Inc., Upper Saddle River, NJ
Tire Pressure Monitoring Systems 22 © 2013 Pearson Higher Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Advanced Automotive Electricity.
Operation Service Diagnosis
BATTERY.
CHAPTER 9 Oscilloscopes and Graphing Multimeters
SERIES, PARALLEL, AND SERIES-PARALLEL CIRCUITS
Produced By Mike Hartlen Automotive Battery THIS PRESENTATION ABOUT AUTOMOBILE SYSTEMS HAS BEEN DEVELOPED BY Mike Hartlen TEACHER OF AUTOMOTIVE TECHNOLOGY.
Automotive Fuel and Emissions Control Systems 3/e By James D. Halderman Copyright © 2012, 2009, 2006 Pearson Education, Inc., Upper Saddle River, NJ
Diagnosis and Troubleshooting of Automotive Electrical, Electronic, and Computer Systems, Fifth Edition By James D. Halderman © 2010 Pearson Higher Education,
1 Battery Safety, Servicing & Testing R. Bortignon.
CHAPTER Wiring Schematics and Circuit Testing 9 Copyright © 2016 by Pearson Education, Inc. All Rights Reserved Automotive Electrical and Engine Performance,
Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All.
Batteries The purpose of the battery is to act as a reservoir for storing electricity.
CHAPTER Series, Parallel, and Series-Parallel Circuits 5 Copyright © 2016 by Pearson Education, Inc. All Rights Reserved Automotive Electrical and Engine.
Automotive Fuel and Emissions Control Systems 3/e By James D. Halderman Copyright © 2012, 2009, 2006 Pearson Education, Inc., Upper Saddle River, NJ
Advanced Engine Performance Diagnosis, Fourth Edition James D. Halderman Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey.
Circuit Testers and Digital Meters 4 © 2013 Pearson Higher Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Advanced Automotive Electricity.
© 2011 Pearson Education, Inc. All Rights Reserved Automotive Technology, Fifth Edition James Halderman BATTERIES 50.
Automotive Engines: Theory and Servicing, 7/e By James D. Halderman Copyright © 2011, 2009, 2005, 2001, 1997 Pearson Education, Inc., Upper Saddle River,
Automotive Electricity and Electronics, 2/e By James D Halderman © 2009 Pearson Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ OBJECTIVES.
Diagnosis and Troubleshooting of Automotive Electrical, Electronic, and Computer Systems, Fifth Edition By James D. Halderman © 2010 Pearson Higher Education,
Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All.
Diagnosis and Troubleshooting of Automotive Electrical, Electronic, and Computer Systems, Fifth Edition By James D. Halderman © 2010 Pearson Higher Education,
Batteries 8 © 2013 Pearson Higher Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Advanced Automotive Electricity and Electronics.
Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All.
Cranking System 9 © 2013 Pearson Higher Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Advanced Automotive Electricity and Electronics.
Automotive Electricity and Electronics, 2/e By James D Halderman © 2009 Pearson Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Automotive.
Diagnosis and Troubleshooting of Automotive Electrical, Electronic, and Computer Systems, Fifth Edition By James D. Halderman © 2010 Pearson Higher Education,
Starting and Charging Systems 23 Introduction to Automotive Service James Halderman Darrell Deeter © 2013 Pearson Higher Education, Inc. Pearson Prentice.
Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All.
Diagnosis and Troubleshooting of Automotive Electrical, Electronic, and Computer Systems, 6/e - By James D. Halderman Copyright © 2012, 2010, 2005, 2001,
CBC Automotive n Operation n Service n Diagnosis Battery.
Automotive Electricity and Electronics, 2/e By James D Halderman © 2009 Pearson Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Automotive.
© Goodheart-Willcox Co., Inc. Permission granted to reproduce for educational use only Battery Testing and Maintenance.
Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All.
Electrical Fundamentals 20 Introduction to Automotive Service James Halderman Darrell Deeter © 2013 Pearson Higher Education, Inc. Pearson Prentice Hall.
Electrical Fundamentals 1 © 2013 Pearson Higher Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Advanced Automotive Electricity and.
Automotive Electricity and Electronics, 2/e By James D Halderman © 2009 Pearson Education, Inc. Pearson Prentice Hall - Upper Saddle River, NJ Automotive.
Diagnosis and Troubleshooting of Automotive Electrical, Electronic, and Computer Systems, 6/e - By James D. Halderman Copyright © 2012, 2010, 2005, 2001,
Electrical Testers Basic test equipment used in today’s shops may include an analog type meter, a VAT (Volt-Amp-Tester), DMM (Digital Multimeter),
Automotive Chassis Systems, 5/e By James D. Halderman Copyright © 2010, 2008, 2004, 2000, 1995 Pearson Education, Inc., Upper Saddle River, NJ All.
Automotive Heating and Air Conditioning CHAPTER Automotive Heating and Air Conditioning, 7e James D. Halderman | Tom Birch SEVENTH EDITION Copyright ©
Diagnosis and Troubleshooting of Automotive Electrical, Electronic, and Computer Systems, Fifth Edition By James D. Halderman © 2010 Pearson Higher Education,
Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All.
Automotive Engines Theory and Servicing
BATTERY TESTING AND SERVICE
BATTERY.
BATTERY.
Automotive Service Modern Auto Tech Study Guide Chapter 28 & 29
Chapter 31 Battery Systems.
FIGURE 17-1 A visual inspection of this battery showed that the electrolyte level was below the plates in all cells.
Battery Testing & Service
Automotive Technology Principles, Diagnosis, and Service
FIGURE 18–1 A visual inspection on this battery shows the electrolyte level was below the plates in all cells.
Presentation transcript:

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 1 FIGURE 18–1 A visual inspection on this battery shows the electrolyte level was below the plates in all cells.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 2 FIGURE 18–2 Corrosion on a battery cable could be an indication that the battery itself is either being overcharged or is sulfated, creating a lot of gassing of the electrolyte.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 3 FIGURE 18–3 Besides baking soda and water, a sugar-free diet soft drink can also be used to neutralize the battery acid.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 4 FIGURE 18–4 (a) A battery voltage of volts is definitely not fully charged and should be charged before testing. (b) A battery that measures 12.6 volts or higher after the surface charge has been removed is 100% charged.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 5 FIGURE 18–5 When testing a battery using a hydrometer, the reading must be corrected if the temperature is above or below 80°F (27°C).

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 6 FIGURE 18–6 This battery has cold-cranking amperes (CCA) of 550 A, cranking amperes (CA) of 680 A, and load test amperes of 270 A listed on the top label. Not all batteries have this complete information.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 7 FIGURE 18–7 An alternator regulator battery starter tester (ARBST) automatically loads the battery with a fixed load for 15 sec. to remove the surface charge, then removes the load for 30 sec. to allow the battery to recover, and then reapplies the load for another 15 sec. The results of the test are then displayed.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 8 FIGURE 18–8 Most light-duty vehicles equipped with two batteries are connected in parallel as shown. Two 500 A, 12 volt batteries are capable of supplying 1,000 A at 12 volts, which is needed to start many diesel engines.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 9 FIGURE 18–9 Many heavy-duty trucks and buses use two 12 volt batteries connected in series to provide 24 volts.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 10 FIGURE 18–10 A conductance tester is very easy to use and has proved to accurately determine battery condition if the connections are properly made. Follow the instructions on the display exactly for best results.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 11 FIGURE 18–11 A typical industrial battery charger. Be sure that the ignition switch is in the off position before connecting any battery charger. Connect the cables of the charger to the battery before plugging the charger into the outlet. This helps prevent a voltage spike that could occur if the charger happened to be accidentally left on. Always follow the battery charger manufacturer’s instructions.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 12 FIGURE 18–12 Adapters should be used on side terminal batteries whenever charging.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 13 FIGURE 18–13 A typical battery jump box used to jump start vehicles. These hand-portable units have almost made jumper cables obsolete.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 14 FIGURE 18–14 Jumper cable usage guide. Notice that the last connection should be the engine block of the disabled vehicle to help prevent the spark that normally occurs from igniting the gases from the battery.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 15 FIGURE 18–15 The code on the Delphi battery indicates that it was built in 2005 (5), in February (B), on the eleventh day (11), during third shift (C), and in the Canadian plant (Z).

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 16 FIGURE 18–16 This mini clamp-on digital multimeter is being used to measure the amount of battery electrical drain that is present. In this case, a reading of 20 mA (displayed on the meter as A) is within the normal range of 20 to 30 mA. Be sure to clamp around all of the positive battery cable or all of the negative battery cable, whichever is easiest to get the clamp around.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 17 FIGURE 18–17 After connecting the shut-off tool, start the engine and operate all accessories. Stop the engine and turn off everything. Connect the ammeter across the shut-off switch in parallel. Wait 20 minutes. This time allows all electronic circuits to “time out” or shut down. Open the switch—all current now will flow through the ammeter. A reading greater than specified (usually greater than 50 mA, or 0.05 A) indicates a problem that should be corrected.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 18 FIGURE 18–18 The battery was replaced in this Acura and the radio displayed “code” when the replacement battery was installed. Thankfully, the owner had the five-digit code required to unlock the radio.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 19 FIGURE 18–19 (a) Memory saver. The part numbers represent components from Radio Shack. (b) A schematic drawing of the same memory saver. Some experts recommend using a 12 volt lantern battery instead of a small 9 volt battery to help ensure that there will be enough voltage in the event that a door is opened while the vehicle battery is disconnected. Interior lights could quickly drain a small 9 volt battery.

Automotive Electricity and Electronics, 3/e By James D. Halderman Copyright © 2011, 2009, 2005 Pearson Education, Inc., Upper Saddle River, NJ All rights reserved. 20 FIGURE 18–20 Many newer vehicles have batteries that are sometimes difficult to find. Some are located under plastic panels under the hood, under the front fender, or even under the rear seat. The jump-start instructions indicate that the spare tire hold-down bolt is to be used as the ground connection if jump starting is necessary.