Workshop on The Future of Superheavy Element Research February 17 - 18, 2004 Gesellschaft f ü r Schwerionenforschung Darmstadt, Germany.

Slides:



Advertisements
Similar presentations
Deep inelastic reactions 238 U 248 Cm primary fragments superheavy isotope 208 Pb 278 Sg fission V. Zagrebaev and W. Greiner, 2007.
Advertisements

SYNTHESIS OF SUPER HEAVY ELEMENTS
1Managed by UT-Battelle for the U.S. Department of Energy Low-Energy Review, 30 August 2011 Search for 283,284,285 Fl decay chains Krzysztof P. Rykaczewski.
Naming of element 110 Darmstadtium Element 111 approved by IUPAC.
J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
At the End of the Nuclear Map Yuri Oganessian Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow region,
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
The Nature of Molecules
Status of the experiments on the synthesis of Element 117
Periodic Table – Filling Order
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
Heavy Element Research at Dubna (current status and future trends) Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Chemistry of Spherical Superheavy Elements – The Road to Success.
Trends of the Periodic Table
Periodic Table Of Elements
2007/6/5 International Nuclear Physics Conference Experiments on Searching for the Heaviest Elements Kosuke Morita Superheavy Element Laboratory.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
s p d (n-1) f (n-2) 6767 Periodic Patterns 1s1s1s1s 2s2s2s2s 3s3s3s3s 4s4s4s4s 5s5s5s5s 6s6s6s6s 7s7s7s7s 3d3d3d3d 4d4d4d4d 5d5d5d5d 6d6d6d6d 1s1s1s1s.
Beyond Darmstadt(ium) - Status and Perspectives of Superheavy Element Research recent results from SHIP (GSI) synthesis and identification of SHE nuclear.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
Superheavy Element Research at Berkeley Ken Gregorich Lawrence Berkeley National Laboratory Festcolloquium and Workshop on the Future of Superheavy Elements.
Modern Periodic Table Objective:
Electron Configuration Filling-Order of Electrons in an Atom.
Synthesis of the heaviest elements at RIKEN Kosuke Morita Superheavy Element Laboratory RIKEN Nishina Center 2009/1/201Periodic Table of D.I. Mendeleev.
Preparation of gas-chemistry of Dubnium at IMP Z. Qin, J.S. Guo, X.L. Wu, H.J.Ding, W.X.Huang, Z.G. Gan, Institute of Modern Physics, Chinese Academy of.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
SHE Research at RIKEN/GARIS
Drift Time Spectrometer for Heaviest Elements Ludwig-Maximilians-Universität MünchenMarch 2006Mustapha Laatiaoui.
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Observation of new neutron-deficient multinucleon transfer reactions
Heavy ion nuclear physics in JINR /present and future/ Yuri Oganessian FLNR JINR 28-th of Nucl. Phys. PAC meeting June 19-20, 2008, JINR, Dubna.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Electron Configuration
TOPIC 0C: Atomic Theory.
1.7 Trends in the Periodic Table
HEAVY ELEMENT RESEARCH AT THE FLNR (DUBNA)
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Study of SHE at the GSI – SHIP
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
Periodic Trends Atomic Size Ionization Energy Electron Affinity
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Periodic Table of the Elements
Electron Configuration
PERIODIC TABLE OF ELEMENTS
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Experiment SHIP: Fusion without “extrapush“
Electron Configurations
Line Spectra and the Bohr Model
PeRiOdIc TaBlE of ElEmEnTs
Electron Configurations and the Periodic Table
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

Workshop on The Future of Superheavy Element Research February , 2004 Gesellschaft f ü r Schwerionenforschung Darmstadt, Germany

Ds Mt Hs Bh Sg Db Rf Lr No Md Es Cf Fm One End of Nuclear Chart  SF  + or EC - Pb + 64 Ni → 271 Ds + n 209 Bi + 64 Ni → n 209 Bi + 70 Zn →

RILAC Facility 18GHz ECR Ion Source RFQ-Linac CSM Acc. Tanks RILAC Acc. Tanks GARIS CSM Dec. Tank

RIKEN

MCP1 MCP2 SSD box PSD ions Focal Plane Detectors

New Rotating Target  = 300 mm,  = 2000 rpm cf. old one  = 125 mm,  = 1000 rpm Tested with 1p  A 86 Kr beam

(v/v 0 )Z 1/3 q eq Bohr’s theorem 208 Pb 209 Bi 169 Tm 208 Pb 209 Bi 198 At 192 Bi 265 Hs 209 Bi 208 Pb 212 Ac 234 Bk 245 Fm 255 Lr 254 No 204 Fr 203 Fr v0: Bohr velocity

system E  BB E  BB E  BB MeV TmMeV TmMeV Tm 208 Pb + 58 Fe Pb + 64 Ni Pb + 70 Zn projectile target recoil compound nucleus Ep/EcnEr/Ecn  p/  cn  r/  cnB  p/B  cnB  r/B  cn energy separator velocity separator gas-filled separator

Hs 263 Sg 259 Rf 255 No 251 Fm 255 Md 11 22 33 44 55 208 Pb + 64 Ni → 271 Ds + n

11 22 33 44 5 E  (MeV) Counts/100keV 11 22 33 44 55 Tdecay Counts/bin s 10s0.1s1ms s 10s0.1s1ms 1000s 10s0.1s1ms 1000s 10s0.1s1ms 1000s 10s0.1s1ms  s ab  =2.9ms  =120ms  =77ms  =1.0s  =3.7s  =220s

NucleinRIKENnGSIT 1/ msimproved 271m msconfirmed 267 Hs msimproved 267m Hs spossible Eopt( 64 Ni)=314MeV Eopt(cm)=240MeV Summary of 208 Pb + 64 Ni → n reaction

Mt 264 Bh 260 Db 256 Lr 252 Md 256 No  1 (14)  2 (14)  3 (12)  4 (11) 55 55 SF (2) SF (1) 209 Bi + 64 Ni → n

Mt 264 Bh 260 Db 256 Lr 252 Md 256 No  1 (14)  2 (14)  3 (12)  4 (11) 55 55 260 Rf 264 Sg SF (2) SF (1) possibility not excluded experimentally 209 Bi + 64 Ni → n

11 22 33 44 55 11 22 33 44 5 s100s1s10ms 100  s Tdecay 254 Md ← 256 Lr ← 260 Db ← 264 Bh ← 268 Mt ←  =5.5ms  =30ms  =1.3s  =8.2s  =26s

RIKENGSI Nuclei n T 1/2 EE E fiss. n T 1/2 E  MeV ms10.2~ ms10.8~ Mt ms9.4~ ms10.1~ Bh s8.86~ s9.1~ Db s8.35~ s9.1~ Lr s8.35~ s8.4~8.5 Eopt( 64 Ni)=319MeV Eopt(cm)=244MeV Summary of 209 Bi + 64 Ni → n reaction

period9/5/2003 ~ 12/29/2003 Beam Energy5.03 AMeV 348 MeV at target half depth Total Dose1.21x10 19 Target Thickness1.37x10 18 /cm 2 (0.48 mg/cm 2 )  _GARIS0.8(assumption)  (1-ev.)7.5x cm 2 upper limit (1  )1.38x cm 2 Irradiation time1390 Hours(58 Days / 74 Days) Beam Intensity2.42x10 12 /s(0.4 p-  A) Summary of 209 Bi + 70 Zn experiment

Atomic Number 1b1b 1nb 10nb 100nb 100pb 10pb 1pb 0.1pb 208 Pb, 209 Bi(HI,1n) reaction present work

Z Ecm ( MeV) Ex (MeV) KUTYMøllerMy & Sw

Z Ecm ( MeV) Ex (MeV) Ecm – E 2nd_fission ( MeV) KUTYMøllerMy & SwKUTYMøllerMy & Sw

K. MorimotoRIKEN D. KajiCNS H. HabaRIKEN E. IdeguchiRIKEN R. KanumgoRIKEN K. KatoriRIKEN H. KouraRIKEN T. OhnishiRIKEN A. OzawaRIKEN T. SudaRIKEN I. TanihataRIKEN A. YonedaRIKEN A. YoshidaRIKEN H. KudoNiigata U. K. SuekiUniv. of Tsukuba F. Tokanai Yamagata U. H. XuIMP Lanzhou Y.-L. ZhaoIHEP Beijing T. ZengPeking U. A. V. YereminFLNR JINR J. PeterCaen/GANIL

February 17, 2004 FEST COLLOQUIUM : On the Occasion of Sigurd Hofmann’s 60th Birthday What Do We Know about SHE - Expectations and RealityYuri Oganessian February 18, 2004 Chair:Gottfried Münzenberg Welcome Walter Henning Theory of Superheavy Nuclei: Old and New - Open ProblemsWalter Greiner Chemistry of Spherical Superheavy Elements - The Road to SuccessHeinz Gäggeler Superheavy Element Research at Berkeley Ken Gregorich Possibilities of the RF Nuclear Center Arzamas-16´ in Producing Pure Actinide Isotopes for Science and Applications Stanislav Vesnovskii In Beam Studies of SHE at High Beam Intensities Matti Leino Superheavy-Element Experiments at RIKEN Kosuke Morita Studies of SHE at GANILChristelle Stodel Heavy Element Research at IMP LanzhouWenlong Zhan Heavy Element Research with Laser Spectroscopy and Buffer Gas Traps Hartmut Backe Efficient Production of Intensive Beams of Rare Isotopes Georgy Gulbekian Steps towards an Optimized Linac for SHE Production at GSI Ulrich Ratzinger Studies of SHE at High Beam Intensities Sigurd Hofmann Closing Remarks Walter Henning

GSI SHIP

JINR/FLNR DUBNA Gas-Filled Separator

JINR/FLNR DUBNA

LBNL BGS

GANIL LISE (Wien Filter)

Z=110 に対する計算値

(v/v 0 )Z 1/3 q eq 2004 年 1 月 9 日於京都大学理学部物理学第二教室

Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Tm( 40 Ar,5n) 204 Fr 169 Tm( 40 Ar,6n) 203 Fr 169 Tm( 48 Ca,5n) 212 Ac 208 Pb( 40 Ar,3n) 245 Fm 208 Pb( 48 Ca,2n) 254 No 209 Bi( 48 Ca,2n) 255 Lr 140 Ce (58 Fe,p5n) 192 Bi 140 Ce( 64 Ni,p5n) 198 At 208 Pb( 58 Fe,n) 265 Hs 208 Pb( 64 Ni,n) Bi( 64 Ni,n)

v/v 0 Transmission

Experimental conditions Beam 64 Ni0.4 ~ 1 p  A Total dose4.0 x Target 208 Pb190 ~ 250  g/cm 2 (98% enriched) evaporated on 30  g/cm 2 C covered by 10  g/cm 2 C B  (GARIS)2.05 Tm P (GARIS)75Pa Counting rate10 ~ 20cps

Summary of the measurement in year Pb( 64 Ni,n) reaction datedaysE in Dose (10 18 ) number of events T av (  g/cm 2 )  (pb) < < E in :energy from the accelerator. T av : average target thickness Total 年 1 月 9 日於京都大学理学部物理学第二教室

11 22 33 44 5 E  (MeV) T decay (s)

 (pb) E( 64 Ni) /MeV RIKEN GSI 208 Pb + 64 Ni → n statistical (1  ) errors energy loss in the target

  Hs  Sg  Rf  No Ep TTEETTEETTEETTEETTEE #MeVmsMeVmsMeVmsMeVs s 1Ju b a b a b 2Ju a a b a a 3Ju a a a 4Ju a 5Sp b b a a a 6Sp a b b b a 7Sp b b a b a 8Sp b a b a b 9Sp b b a a 10Sp a a b a 11Sp a b a b b 12Sp b a b a 13No a b a 14No a a b b

Experimental conditions Beam 64 Ni0.7 ~ 1.8 p  A Total dose1.30 x Target 209 Bi210 ~ 310  g/cm 2 evaporated on 30  g/cm 2 C covered by 10  g/cm 2 C B  (GARIS)2.05 Tm P (GARIS)75Pa Counting rate2 ~ 10cps

Summary of the measurement in year Bi( 64 Ni,n) reaction datedaysE in Dose (10 18 ) n T av (  g/cm 2 )  (pb) < E in :energy from the accelerator. T av : average target thickness Total

    CN Mt 256 Lr 260 Db 264 Bh  252 Md 17-Feb ms MeV (PSD) 13.0 ms MeV (PSD) 1.45 s 9.60 MeV (PSD) s 9.05 MeV (PSD) 21.9 s 8.37 MeV (PSD) E proj =323MeV     CN Mt 256 Lr 260 Db 264 Bh  252 Md 17-Feb ms MeV (PSD+SSD) 9.2 ms MeV (PSD) 1.38 s 9.81 MeV (PSD+SSD) 1.93 s 9.17 MeV (PSD+SSD) 11.9 s 8.39 MeV (PSD+SSD) 14.9 ms MeV (PSD+SSD)     CN Mt 256 Lr 260 Db 264 Bh  252 Md 20-Feb ms 1.12 MeV (PSD) escape 21.8 ms 9.85 MeV (PSD) 0.51 s 9.34 MeV (PSD) 33.5 s 8.65 MeV (PSD) 209 Bi( 64 Ni,n) st 2nd 3rd

   CN Mt 260 Db 264 Bh 26-Feb ms MeV (PSD+SSD) ms MeV (PSD) 0.54 s 9.57 MeV (PSD) 1.71 s 231 MeV (PSD+SSD) E proj =323MeV     CN Mt 256 Lr 260 Db 264 Bh 26-Feb ms MeV (PSD) 36.6 ms MeV (PSD+SSD) 1.87 s 9.66 MeV (PSD+SSD) 1.52 s 9.40 MeV (PSD) 2.82 ms MeV (LG)     CN Mt 256 Lr 260 Db 264 Bh 8-Apr ms MeV (PSD+SSD) 0.44 s 9.58 MeV (PSD) s 8.81 MeV (PSD) 209 Bi( 64 Ni,n) S.F. 6th 5th 4th

  CN Mt 264 Bh 15-Apr ms MeV (PSD+SSD) ms 2.76 MeV (PSD)esc 0.97 s 208 MeV (PSD) E proj =323MeV     CN Mt 256 Lr 260 Db 264 Bh  252 Md 14-Apr ms MeV (LG) ms MeV (PSD) 3.6 ms 9.31 MeV (PSD) 4.87 s 9.01 MeV (PSD) s 8.50 MeV (PSD) 5.11 ms MeV (PSD)     CN Mt 256 Lr 260 Db 264 Bh  252 Md 16-Apr ms MeV (PSD) 1.34 s 9.50 MeV (PSD) 3.69 s 9.10 MeV (PSD) 7.87 s 8.41 MeV (PSD) 209 Bi( 64 Ni,n) S.F. 9th 8th 7th

    CN Mt 256 Lr 260 Db 264 Bh 5-May ms MeV (PSD+SSD) 32.4 ms MeV (PSD) 1.91 s 8.87 MeV (PSD+SSD) s MeV (PSD) E proj =320MeV 30-Apr ms MeV (PSD+SSD)     CN Mt 256 Lr 260 Db 264 Bh  252 Md 5-May ms MeV (PSD) 1.0 s 9.85 MeV (PSD) 1.14 s 9.14 MeV (PSD) s 8.47 MeV (PSD+SSD) 209 Bi( 64 Ni,n)   CN Mt 264 Bh 1.0 ms MeV (PSD) 8.8 ms MeV (PSD+SSD) 4.93 s 206 MeV (PSD+SSD) S.F. 12th 11th 10th

    CN Mt 256 Lr 260 Db 264 Bh  252 Md 12-May ms MeV (PSD+SSD) 3.35 ms MeV (PSD) 0.81 s 9.63 MeV (PSD) 2.42s MeV (PSD+SSD) 6.85 s 8.63 MeV (PSD) E proj =323MeV 8-May-2003     CN Mt 256 Lr 260 Db 264 Bh 6.84 ms MeV (PSD+SSD) 37.2 ms 9.40 MeV (PSD) 1.23 s 9.56 MeV (PSD+SSD) 0.33 s 8.29MeV (PSD+SSD) 209 Bi( 64 Ni,n) th 13th

11 22 33 44 5 T decay (s) E  (MeV) 254 Md ← 256 Lr ← 260 Db ← 264 Bh ← 268 Mt ←

* * CN Q-valueExopt.CN Q-valueExopt. MeV KUTY Møller My. & Sw Optimum excitation energies for 1n evaporation channel

213 Fr MeV 4p transfer 211 Po MeV pn transfer 211m Po MeV pn transfer 212 At MeV 2pn transfer 212m At 7.837,7.897 MeV 2pn transfer 213 Rn MeV 3pn transfer 214 Fr MeV 4pn transfer 214m Fr 8.546, MeV 4pn transfer 199 At MeV p4n evap. 196 Po MeV  4n evap. 197 Po MeV  3n evap. 198 Po MeV 199 Po MeV 200 Po MeV 197m Po MeV E  (MeV) Counts/10keV 140 Ce + 64 Ni evaporation residues 209 Bi + 64 Ni transfer products 209 Bi Nat. Ce 64 Ni to GARIS system check & energy calibration RARF_PAC 02Jul2003