Issues in the Quasi-free Delta Production Region Ryoichi Seki (CSUN/Caltech) in collaboration with Hiroki Nakamura (Waseda) RCCN International Workshop;

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Bodek-Yang Update to the Bodek-Yang Unified Model for Electron- and Neutrino- Nucleon Scattering Cross sections Update to the Bodek-Yang Unified.
July 20-25, 2009N u F a c t 0 9 IIT, Chicago Quark-Hadron Duality in lepton scattering off nucleons/nuclei from the nucleon to the nucleus Krzysztof M.
Exclusive   and  electro-production at high Q 2 in the resonance region Mark Jones Jefferson Lab TexPoint fonts used in EMF. Read the TexPoint manual.
Neutrino-induced meson production model for neutrino oscillation experiments Satoshi Nakamura Nuclear Theory Group.
Neutrino-induced meson productions Satoshi Nakamura Osaka University, Japan Collaborators : H. Kamano (RCNP, Osaka Univ.), T. Sato (Osaka Univ.) T.-S.H.
Experimental Status of Deuteron F L Structure Function and Extractions of the Deuteron and Non-Singlet Moments Ibrahim H. Albayrak Hampton University.
Neutrino Interactions with Nucleons and Nuclei Tina Leitner, Ulrich Mosel LAUNCH09 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Measurements of F 2 and R=σ L /σ T on Deuterium and Nuclei in the Nucleon Resonance Region Ya Li November 3, 2009 Jlab E02-109/E (Jan05)
Disentangling the EMC effect ? Eli Piasetzky Tel Aviv University, Israel The EMC effect is 30 years old.
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
1 A : Nobel Prize Friedman, Kendall, Taylor for their pioneering investigations concerning deep inelastic scattering of electrons on protons and.
Quark-Hadron Duality Cynthia Keppel Hampton University / Jefferson Lab.
Howard Budd, Univ. of Rochester1 Vector and Axial Form Factors Applied to Neutrino Quasi-Elastic Scattering Howard Budd University of Rochester (in collaboration.
Eli Piasetzky Tel Aviv University, ISRAEL Short Range Correlations and the EMC Effect Work done in collaboration with: L. B. Weinstein (ODU) D. Higinbotham,
BONUS (Barely Off-Shell Nucleon Structure) Experiment Update Thia Keppel CTEQ Meeting November 2007.
Arie Bodek, Univ. of Rochester1 Outline of a Program in Investigating Nucleon and Nuclear Structure at all Q 2 - Starting with P ( PART 1 of JUPITER.
Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.
African Summer School 2012 Connecting the SRC & EMC Effects by.
Neutrino-induced meson productions off nucleon in the resonance region Satoshi Nakamura Osaka University Collaborators : H. Kamano (RCNP, Osaka Univ.),
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
Interpretation of recent JLab results on quasi elastic (e,e ’ p) reactions off few- nucleon systems INPC2007, Tokyo, 6 June, 2007 H. Morita, Sapporo Gakuin.
Exclusive Production of Hadron Pairs in Two-Photon Interactions Bertrand Echenard University of Geneva on behalf of the LEP collaborations Hadronic Physics.
ニュートリノ原子核反応 佐藤 透 ( 阪大 理 ) JPARC Dec Our previous works on neutrino reaction single pion production(Delta region) nuclear coherent pion production.
Hadronic Multi-particle Final State Measurements with CLAS at Jefferson Lab Laird Kramer Florida International University Neutrino Scattering, March 2003.
Nuclear Forces at Short Distances and the Dynamics of Neutron Stars Nuclear Forces at Short Distances and the Dynamics of Neutron Stars.
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
Probe resolution (GeV) N π,  Q 2 =12 GeV 2 Q 2 =6 GeV 2 The study of nucleon resonance transitions provides a testing ground for our understanding.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and.
Duality: Recent and Future Results Ioana Niculescu James Madison University Hall C “Summer” Workshop.
EINN 2005, Milos, GreeceShalev Gilad - MIT Nuclear Structure and Dynamics in the 3 He(e,e’p)d and 3 He(e,e’p)pn Reactions Two high resolution spectrometers.
Dynamical Coupled-Channels Approach for Single- and Double-Pion Electroproductions: Status and Plans Hiroyuki Kamano Research Center for Nuclear Physics.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.
Few Body-18Santos, Brazil August 25, Meson Exchange Currents in Pion Double Charge Exchange Reaction Roman Ya. Kezerashvili NY City College of Technology.
Jump to first page Quark-Hadron Duality Science Driving the 12 GeV Upgrade Cynthia Keppel for Jefferson Lab PAC 23.
Nstars: Open Questions Nstars: Open Questions L. Tiator, Institut für Kernphysik, Universität Mainz  Introduction  Roper and S 11  the role of the D.
Higher order forward spin polarizabilities Barbara Pasquini Pavia U. and INFN Pavia Paolo Pedroni Dieter Drechsel Paolo Pedroni Dieter Drechsel INFN Pavia.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
Nucleon Resonances in  Scattering up to energies W < 2.0 GeV  introduction  a meson-exchange model for  scattering  conventional resonance parameters.
The BoNuS Experiment at Jefferson Lab’s CLAS. Svyatoslav Tkachenko University of South Carolina for the CLAS collaboration.
Measuring the Spin Structure of 3 He and the Neutron at Low Q 2 Timothy Holmstrom College of William and Mary For the Jefferson Lab Hall A Collaboration.
Model independent extraction of neutron structure functions from deuterium data. Svyatoslav Tkachenko University of South Carolina.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Neutrino cross sections in few hundred MeV energy region Jan T. Sobczyk Institute of Theoretical Physics, University of Wrocław (in collaboration with.
Thomas Jefferson National Accelerator Facility PAC-25, January 17, 2004, 1 Baldin Sum Rule Hall C: E Q 2 -evolution of GDH integral Hall A: E94-010,
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) Guan Yeu Chen (Taipei) DMT dynamical model.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
Study of Excited Nucleon States at EBAC: Status and Plans Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz,
Comparison of quasi-elastic cross sections using spectral functions with (e,e') data from 0.5 GeV to 1.5 GeV Hiroki Nakamura (Waseda U). Makoto Sakuda.
Crystal Ball Collaboration Meeting, Basel, October 2006 Claire Tarbert, Univeristy of Edinburgh Coherent  0 Photoproduction on Nuclei Claire Tarbert,
Shin Nan Yang National Taiwan University Collaborators: Guan Yeu Chen (Taipei) Sabit S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) DMT dynamical model.
1 11/20/13 21/11/2015 Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22,
A partial wave analysis of pion photo- and electroproduction with MAID  introduction  a dynamical approach to meson electroproduction  the unitary isobar.
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
1  - mesic nuclei and baryon chiral symmetry in medium Hideko Nagahiro (Nara Women’s Univ.) collaborators: Daisuke Jido (Tech. Univ. Muenchen) Satoru.
BONuS experiment. Svyatoslav Tkachenko University of Virginia for the CLAS collaboration.
Extracting h-neutron interaction from g d  h n p data
Jun Kameda (ICRR) RCCN International workshop at Kashiwa (Dec.10,2004)
Short Range NN Correlations (from Inclusive Cross Sections)
Covariant Formulation of the Deuteron
Quasielastic Scattering at MiniBooNE Energies
Carlotta Giusti University and INFN Pavia
Study of Strange Quark in the Nucleon with Neutrino Scattering
Deeply Bound Mesonic States -Case of Kaon-
Impact of neutrino interaction uncertainties in T2K
Meson Production reaction on the N* resonance region
Presentation transcript:

Issues in the Quasi-free Delta Production Region Ryoichi Seki (CSUN/Caltech) in collaboration with Hiroki Nakamura (Waseda) RCCN International Workshop; Kahiwa, Japan; December 11, 2004

Q = ( ,q)  1. Nucleonic reactions + Ν  ℓ + Δ(1232) ℓ + Ν* a) (e,e’) SLAC J-Lab b) (,ℓ) Axial transition form factors 2. Nuclear reactions + A  ℓ + A* ℓ + A* +  …………. a) Spectral function b) Final state interaction c) Exchange current e) Other approaches Structure/ Response Function ( ,q )

Dufner-Tsai (1968), Fogli-Nardulli (1979)Paschos-Yu-Sakuda (2004)Dufner-Tsai (1968), Fogli-Nardulli (1979)Paschos-Yu-Sakuda (2004) Dufner-Tsai(1968), Fogli- Nardulli (1979)(Res2) Paschos-Yu-Sakuda (2004) (Res1)

1.Nucleonic reactions a) (e,e’) SLAC Target: p, d and inclusive  p and n responses A. Bodek et al., Phys. Rev. D20, 1471 (1979) A. Bodek and J. L. Richie, Phys. Rev. D23, 1070 (1981)

b) p (e,e’) J-Lab

Theoretical models 1) Unitary isobar model, MAID and Jlab/Yeveran D. Drechsel, S. S. Kamalov, and L.Tiator, Nucl. Phys. A645,145(‘99) I. G. Aznauryan, Phys. Rev. C68, (‘03); C67, (‘03) 2) Multi-channel K-matrix model, SAID R. A. Arndt et al., Phys. Rev. C52, 2120 (1995) Int. J. Mod. Phys. A18, 449 (2003) 3) Dynamical model, SL (Sato-Lee) and DMT (Dubna-Mainz-Taiwan) T. Sato and T.-S. H. Lee, Phys. Rev. C54, 2660 (1996) Phys. Rev. C63, (2001) S. S. Kamalov and S. N. Young, Phys. Rev. Lett. 83, 4494 (‘99) + D. Drechsel, O. Hanstein, L. Tiator, Phys. Rev. C64, (’02) * A recent review: V. D. Burkert and T.-S. H. Lee, nucl-ex/ (July’04) Phenomenological model H2 model, C. Keppel (1995)

a) n (e,e’) J-Lab 1) D (e,e’p) for Ee = GeV and Q 2 = 1.2 – 5 GeV 2 A. V. Klimenko, PhD thesis (Old Dominion Univ., 2004) 2) D (e,e’p) BONUS (2005)

Inclusive Neutron Resonance Electroproduction Again, a large uncertainty in neutron extraction….. …must consider deuteron wave function, Fermi smearing, off-shell effects, neutron structure function shape,... Courtesy of Thia Keppel

So, what will BONUS measure?… Inclusive Neutron Measurements in the JLab (large x, low Q) Kinematic Regime Elastic form factors Resonance structure –Transition form factors –Quark-hadron duality Data over a range of Q 2, x – Structure function moments –Large x nucleon structure Courtesy of Thia Keppel

BONUS RTPC Design 4 cm He 4mm x 10 cm 7.5 atm , z from pads r from time dE/dx from charge along track (particle ID) neonDME Courtesy of Thia Keppel

Courtesy of Thia Keppel Transition Form Factors from Inclusive Data – Projected Results Neutron n   Statistical uncertainties only Model uncertainty dominant, comparable to proton extractions

b) Nucleonic (,ℓ) *Scaling: A. Bodek, I. Park, and U. ki Yang, hep/ph/ (16 Nov 2004) * D. Rein and L. Sehgal, Ann. Phys. 133, 79 (1981) D. Rein, Z. Phys. C 35, 43 (1987)  BNL data (1990) and Int. Workshop on N* Physics (1997) * Alverez-Russo, Singh,and Vincent Vacas, Phys. Rev. C57, 2693 (‘98) E. Paschos, J.-Y. Yu, and M. Sakuda, Phys. Rev. D69, (‘04) * T. Sato, D. Uno, and T.-S. H. Lee, Phys. Rev. C67, (2003) p ( ,  ¯  ) p Data: BNL(1990) Data:ANL(1979)

2. Nuclear reactions a) Spectral function : * O. Benhar et al. (H. Nakamura’s talk in this workshop) Many-body nuclear matter calculation (correlated nuclear-state basis) + Shell model, in local density approx. * C. Ciofi degli Atti and S. Simula, Phys. Rev. C53, 1689 (‘96) b) Final state interaction : * Nucleon: Eikonal approx. of Lorentzian with optical potential * Pion: L. L. Salcedo, E. Oset et al., Nucl. Phys. A484, 557 (“88) (Note: Importance of the real part of the potential for low-E pions)

 nuclear effects in 16 O Probability of  0 – 16 O interaction in NEUT  + – 16 O cross section (NEUT vs. Data)

c) Exchange current 1) Current conservation + Off-energy/mass shell contributions * Electromagnetic  meson exchange models * Axial  Δ(1232) and pions in intermediate states modified propagators with their self-energy 2) Warning: % quenching of gA (GT) in beta decays Kirchbach and D. Riska, Nucl. Phys. A578, 511 (‘94) M. Hjorth-Jensen et al. Nucl. Phys. A563, 525 (1993) D. O. Riska, Phys. Rep. 181, 208 (1989) Effects on the form factors?

d) Other approaches 1) Valencia/Granada many-body calculations : A. Gil, J. Nieves, and E. Oset, Nucl. Phys. A627, 543 (1997) Many-body approach to the inclusive (e,e’) reaction … J. Nieves, J. E. Amaro, and M. Valverde, nucl-th/ (3 Aug 2004) Nuclear many-body theory of electroweak interactions … 2) Donnelly/I. Sick superscaling (RFG + phenomenological modifying function) J. E. Amaro et al., nucl-th/ (30 Set 2004) Using electron scattering superscaling to predict charge- changing neutrino cross sections in nuclei C. Maieron, T. W. Donnelly, I. Sick, Phys. Rev. C65, (2002) Extended superscaling of electron scattering from nuclei

16O(e, e’) Effects of form factor (Res1:Paschos et al.) Data M. Anghinolfi et al. Nucl. Phys. A602, 405 (1996)

Conclusion: Assessment of the present status of the Delta region 1) Quality: Presently available calculations and codes include all important physics except for that associated with the current (partial) conservation. 2) Predictability: More tuning of the calculations is desirable to the electron-scattering precision data, currently available or becoming available. 3) Experiment: More precise neutrino-nucleon data are critically needed 4) Codes: It is perhaps the best time for creating codes of higher quality than the presently available, by putting all together.