Review of Polarized lepton-nucleon scattering s z =  = J q + J g =   + L q +  G + L g K. Rith, HERA-III, München, 18.12.2002.

Slides:



Advertisements
Similar presentations
Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
Advertisements

1/9 Constraint on  g(x) at large-x Bj Masanori Hirai Titech (Asymmetry Analysis collaboration) With S. Kumano and N. Saito hep-ph/ ,TUKUBA.
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
Polarized structure functions Piet Mulders ‘Lepton scattering and the structure of nucleons and nuclei’ September 16-24, 2004
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Hampton, May Goals of this parallel.
1 Hyperons in polarized pp collisions and the nucleon spin structure Qinghua Xu( 徐庆华 ), Shandong University/LBNL July 10, 2008, QCD workshop,USTC The strange.
1 Updates on Transversity Experiments and Interpretations Jen-Chieh Peng Transversity Collaboration Meeting, JLab, March 4, 2005 University of Illinois.
Working Group on e-p Physics A. Bruell, E. Sichtermann, W. Vogelsang, C. Weiss Antje Bruell, JLab EIC meeting, Stony Brook, Dec Physics Topics Working.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Highlights from the COMPASS experiment QNP09, Beijing, September 2009 G. K. Mallot CERN/PH for the Collaboration.
1 Flavor Symmetry of Parton Distributions and Fragmentation Functions Jen-Chieh Peng Workshop on “Future Prospects in QCD at High Energy” BNL, July 17-22,
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
High-Energy QCD Spin Physics Xiangdong Ji Maryland Center for Fundamental Physics University of Maryland DIS 2008, April 7, 2008, London.
Columbia University Christine Aidala September 4, 2004 Solving the Proton Spin Crisis at ISSP, Erice.
Spin and azimuthal asymmetries in SIDIS at JLAB  Physics Motivation  Jlab kinematics and factorization  Double spin asymmetries  Single Spin Asymmetries.
New results on SIDIS SSA from JLab  Physics Motivation  Double spin asymmetries  Single Spin Asymmetries  Future measurements  Summary H. Avakian.
Status Report of HERMES Pasquale Di Nezza (on behalf of HERMES Collaboration) First measurement of transversity Exotic baryons: the pentaquark The spectrometer.
QCD analysis of the nucleon spin structure function data in next to leading order in α S The polarized gluon distribution in the nucleon Jechiel Lichtenstadt.
1 60th-PRC – DESY NOV E.C. Aschenauer News from HERMES since May 2005.
Spin structure of the nucleon
Future Physics at JLab Andrew Puckett LANL medium energy physics internal review 12/14/
The Role of Higher Twists in Determining Polarized Parton Densities E. Leader (London), A. Sidorov (Dubna), D. Stamenov (Sofia) 12th International Workshop.
Spin physics at the SMC Spin Muon Collaboration A. Magnon (CEA-Saclay/IRFU & COMPASS)
The Role of Higher Twists in Determining Polarized Parton Densities E. Leader (London), A. Sidorov (Dubna), D. Stamenov (Sofia) 10th International Workshop.
Harut Avakian 1 H. Avakian, JLab, Sep 5 Rich Technical Review, 5 th September 2013 Kaon physics with CLAS12 Introduction Kaons in SIDIS Medium effects.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
F.-H. Heinsius (Universität Freiburg/CERN) Introduction Gluon polarization in the nucleon Transverse spin distribution Newest Results from the Experiment.
1 E.C. Aschenauer Recent results from lepton proton scattering on the spin structure of the nucleon.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Quark Structure of the Proton – The Horizons Broaden! On behalf of the HERMES collaboration H. E. Jackson highlights.
Strangeness and Spin in Fundamental Physics Mauro Anselmino: The transverse spin structure of the nucleon Delia Hasch: The transverse spin structure of.
1/8 Constraint on  g(x) from  0 production at RHIC Masanori Hirai Tokyo Tech (Asymmetry Analysis collaboration) With S. Kumano and N. Saito Phys.Rev.D74,
R. Joosten, Oct. 7, 2008 Measurement of TMDs in Semi-Inclusive DIS in Semi-Inclusive DIS Rainer Joosten University of Bonn Charlottesville, VA, October.
1 Probing Spin and Flavor Structures of the Nucleon with Hadron Beams Flavor and spin structures of the nucleons –Overview and recent results Future prospects.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
POLARISATION IN QCD -  anomalous magn. moment, g-2 - Spin structure of the nucleon  q,  G, GPD,  t q.
HERMES による パートン helicity 分布関数の QCD 解析 Tokyo Inst. of Tech. 1. Quantum Chromo-Dynamics (QCD) 2. Parton Helicity Distribution and Nucleon Spin Problem 3.
1 Harut Avakian Studies on transverse spin effects at Jlab QCD Structure of the Nucleon June 12-16, 2006, Rome Physics motivation k T -effects from unpolarized.
1 Qinghua Xu, (LBNL) EIC workshop, July 19, 206 Introduction Spin transfer of (anti)Lambda in pp collisions (anti)Lambda polarization in lp collisions.
Thomas Jefferson National Accelerator Facility PAC-25, January 17, 2004, 1 Baldin Sum Rule Hall C: E Q 2 -evolution of GDH integral Hall A: E94-010,
HERMES: status and selected recent results Workshop on Hadron Structure and Spectroscopy Paris, 1-3 March 2004 K. Rith  The quark helicity distributions.
HERMES results on azimuthal modulations in the spin-independent SIDIS cross section Francesca Giordano DESY, Hamburg For the collaboration Madrid, DIS.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
Contalbrigo Marco INFN Ferrara ECT* Workshop - Lattice QCD and Hadron Physics 15 th January 2014, Trento.
Overview of Jefferson Lab’s Spin Physics Programme Stephen Bültmann - ODU RHIC/AGS Users Meeting, June 2007 Introduction Experimental Setup Asymmetry Measurement.
TMD flavor decomposition at CLAS12 Patrizia Rossi - Laboratori Nazionali di Frascati, INFN  Introduction  Spin-orbit correlations in kaon production.
The Importance of Higher Twist Corrections in Polarized DIS E. Leader, A. Sidorov, D. Stamenov, LSS 11th International Workshop on Deep Inelastic Scattering.
Delia Hasch Transversity & friends from HERMES International workshop on hadron and spectroscopy, Torino, Italy, 31. March – 02. April 2008 outline outline.
Polarised DIS Experiment Gerhard Mallot. G. Mallot/CERN Spin Summer School, BNL, 2004 Plan Lecture I –introduction –kinematics –the cross section –structure.
I R F U Nucleon structure studies with the COMPASS experiment at CERN Stephane Platchkov Institut de Recherche sur les lois Fondamentales de l’Univers.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
The Spin Physics Program at Jefferson Lab Sebastian Kuhn Old Dominion University e e PtPt PePe.
New results from Delia Hasch DPG Spring Meeting 2004 – Nuclear Physics Cologne (Germany) March, (on behalf of the HERMES Collaboration) Exotic.
R. Joosten, Oct. 7, 2008 Measurement of TMDs in Semi-Inclusive DIS in Semi-Inclusive DIS Rainer Joosten University of Bonn Charlottesville, VA, October.
Experimental Studies of Spin Duality P. Bosted (JLab) Jlab Users Meeting, June 2005  Bloom-Gilman duality in inclusive g 1  Factorization in polarized.
1 CLAS-eg1 pol.-proton analysis H.Avakian (JLab) semi-SANE Collaboration Meeting April 21, 2005.
1 Transversity Experiments Experimental probes for transversity Current experimental status on transversity and other related distribution and fragmentation.
Flavor decomposition at LO
HERa MEasurement of Spin
Unpolarized Azimuthal Asymmetries from the COMPASS Experiment
COMPASS results on inclusive and semi–inclusive polarised DIS
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Luciano Pappalardo for the collaboration
The Spin of the Nucleon --- The View from HERMES ---
New Results for Transverse Spin Effects at COMPASS
--- New Results from HERMES ---
Selected Physics Topics at the Electron-Ion-Collider
University of Erlangen-Nürnberg & DESY
Marco Contalbrigo, 27 September 2005
The Helicity Structure of the Nucleon from Lepton Nucleon Scattering
Presentation transcript:

Review of Polarized lepton-nucleon scattering s z =  = J q + J g =   + L q +  G + L g K. Rith, HERA-III, München,

Spin-dependent Deep-Inelastic Lepton-Nucleon Scattering  Quarks Nucleon  1/2 ~ q + Quarks Nucleon       3/2 ~ q - Polarised:  q f (x):=q f + (x) - q f - (x)  q f =  q f (x) dx  1/2 -  3/2 g 1 Asymmetry: A 1 =  g 1 (x) :=  f z f 2  q f (x)  1/2 +  3/2 F 1 Unpolarised: q f (x):=q f + (x) + q f - (x) F 1 (x) :=  f z f 2 q f (x)

SU(3): 2 relations   q 3 =  u -  d = g A /g V = F + D = 1,2573 Neutron-decay   q 8 =  u +  d - 2  s = 3F - D = 0,579 ,  -decay   q 0 =  =  u +  d +  s = + 9 I 1 p,(n) (Q 2 )= [   q 3 +   q 8 ]  C NS (Q 2 ) +   C S (Q 2 ) + 2n f  G  C G (Q 2 ) - Integrals and Sum Rules I 1 := g 1 (x)dx; 18 I 1 p,(n) = 4(1)  u +1(4)  d +  s ? QCDQCD Axial Anomaly Ellis-Jaffe S.R.:  s = 0   q 8 =  I 1 p =(1/12)[  q 3 + (5/3)  q 8 ]  C(Q 2 )  0,175 (at Q 2  10 GeV 2 ) Bjorken Sum Rule: 6(I 1 p - I 1 n )   q 3 = g A /g V

A 1  g 1 /F 1 - Proton  g 1 p /F 1 p well known for x   Excellent agreement between all experiments  g 1 p /F 1 p (within errors) independent of Q 2 ; Q 2 dependence of g 1 and F 1 very similar  = f(x)  Extrapolation to x  0 for Q 2 = Q 0 2 ?

g 1 (x)/F 1 (x) - Deuteron 

g 1 (x) - Proton, Deuteron

A 1 (x), g 1 (x) - Neutron from 3 He 3 He: good approximation for polarized n-Target, = 0 QPM 18 g 1 n (x) ~  u(x) +4  d(x) < 0 Expt.  d(x)    u(x)  p p n 3 He

Gluons  G Rest ? Orbital angular momenta L q, g xg 1 (x) - world data  Integrals at Q 0 2 = 2,5 GeV 2, QCD analysis of Q 2 dependence and SU(3):  =  u+  d+  s  0,20  0,04 .. ? ?

Q 2 - dependence of g 1 (x,Q 2 )  Q 2 - dependence in agreement with NLO QCD parameterisation  Data still insufficient for reliable QCD analysis and determination of spin-dependent gluon distribution G(x)

NLO QCD (MS) fit Assumptions: - Flavour symmetric spin dependent sea -  u v and  d v constraint by F and D (SU(3) symmetry) Results for Q 0 2 = 4 GeV 2 :  u v  (  0.10)  d v  (  0.10)  q s     G  BB: Blümlein, Böttcher hep/ph LSS: Leader et al., hep/ph GRSV: Glück et al., hep/ph AAC: Goto et. Al., hep/ph

g 2 (x) g 2 (x,Q 2 ) = - g 1 (x,Q 2 ) + g 1 (z,Q 2 ) dz/z + g 2 (x,Q 2 ) = g 2 WW (x,Q 2 ) + g 2 (x,Q 2 ) ~ ~ Quark-Gluon Correlation (Twist-3 Operator) E155x, hep-ex/ Further improvement by HERMES and COMPASS very unlikely x n g 2 (x)dx =  n/(n+1) (-a n +d n ) x n g 1 (x)dx =  a n

A T, b 1 and b 2 - deuteron  Deuteron is spin-1 target V = P z = p + - p -,  P z   1 T = P zz = p + + p - - 2p 0, -2  P z z  +1  More structure functions Proton Deuteron F 1   z q 2 [q + + q - ]   z q 2 [q + + q - + q 0 ] F 2 2xF 1 2xF 1 g 1   z q 2 [q + - q - ]   z q 2 [q + - q - ] b 1   z q 2 [2q 0 - (q + + q - )] b 2 2xb 1  meas =  u [1 + P b VA  +  T A T ] A   g 1 /F 1 [ 1 +  T A T ] A T   b 1 /F 1

The HERMES polarised internal gas target

A T, b 1 and b 2 - deuteron  First measurement, only possible with atomic gas target Model: K. Bora, R.L. Jaffe, PRD 57 (1998) 6906

A T, b 1 and b 2 - deuteron  Deuteron is spin-1 target  A T  little impact on det. of g1  b 1 d is sizeable ! and interesting by itself  related to - nuclear binding - D-state admixture - diffractive nuclear shadowing - nuclear excess pions in D - VMD + double scattering - See e.g.: - P. Hoodboy et al., N.P. B312 (89) R.L. Jaffe & A. Manohar N.P. B321 (89) X. Artru & M. Mekhfi, Z. Phys. C45 (90) N.N. Nikolaec & W. Schäfer, P.L. B398 (97) J. Edelmann et al., Z. Phys. A357 (97) 129, P.R. C57 (98) K. Bora & R.L. Jaffe, P.R. D57 (98)

Spin-dependent quark distributions from semi-inclusive asymmetries Leading hadron originates with large probability from struck quark D(z):= Fragmentation function = E - E‘ z = E h /

Semi-inclusive asymmetries-1 z q 2  q(x) D q h (z) A 1 h (x,z) = z q 2 q(x) D q h (z) z q 2 q(x) D q h (z)  q(x) = z q‘ 2 q‘(x) D q‘ h (z) q(x) Quark-‘Purity‘ P h q Different targets and hadrons h : Solve linear system for Q with A = (A 1,p, A 1,d, A 1,p  , A 1,d  , A 1,p K  ) A = P Q P.L. B464 (1999) 123 In leading order:

Semi-inclusive asymmetries from Deuteron  ,K, p asymmetries identified with RICH Hadrons Pions Kaons  Statistics sufficient for 5-parameter-fit Q = (  u(x)/u(x),  d(x)/d(x),  u(x)/u(x),  d(x)/d(x),  s(x)/s(x) )

Purities  Shaded bands: systematic uncertainties  Adequate degree of orthogonality : - u versus d from h + - valence versus sea from hadron charge - u versus d from h -  Kaons have about 10% sensitivity to the strange sea (Probability that observed hadron originates from quark of type f)

Extracted quark-polarisations  Polarisation of sea-quarks small and compatible with 0  No direct evidence for a negative polarisation of strange- quarks  Results for NLO analysis very similar !

Extracted spin-dependent quark distributions  u >  d ?  s < 0 ?  The HERMES data are consistent with flavour symmetry of spin-dependent sea  Data with much higher statistical accuracy urgently needed

Prospects for spin-dependent quark distributions  COMPASS data will extend to lower x-values  Need high statistics data from both LiD and NH 3

The gluon polarisation  G/G Method: Photon-Gluon-Fusion  t  h/2m q qqqq Charm-production Pairs of hadrons h + h - with high transverse momenta c c c J/  e +,  + e -,  - ptpt g ** c c c D D ** g ** ( ) g h1h1 h2h2 (Hard scale: mass of c-quark) (Hard scale: p t )

Gluon polarisation  G/G 3 main contributions to  *p  h + h - X : p q q q q q q V      h2h2 h1h1 h1h1 h1h1 h2h2 h2h2 ** ** ** g g QCDCVMDPGF A VDM  0.5  q/qA VDM = 0 A PGF  -  G/G ? Relative contributions: Monte Carlo simulation - PYTHIA but: applicable at HERMES energies ? 

Gluon polarisation  G/G Asymmetry is negative From this:  G/G = 0.41  0.18  0.08 (  G/G) G(x) dx  0,6 ..... small, COMPASS RHIC = 0.17  2006 P.R.L. 84 (2000) 2584

Gluon polarisation  G/G COMPASS :  N  D 0 X (  h + h - X)  A 0.04 SLAC-E161:  p  D X  A cc 0.006

Orbital angular momentum contributions L q,g to nucleon spin ?  =   + L z q +  G + L z g 0,10 > 0,6 ‘No one knows how to measure it‘ (R. Jaffe) one hope: Exclusive processes, Generalised parton distributions (GPDs)     pp p p ? **  ** DVCS , K,  , ,  X.Ji: J q =   + L z q = lim  dx x [H(x, ,t) + E(x, ,t)] t  0

Orbital angular momentum contributions L q,g ? Example: DVCS (Interference of DVCS and Bethe-Heitler) Azimuthal asymmetries: beam polarisation, beam charge, target polarisation P.R.L. 87 (2001) P.R.L. 87 (2001) Hermes CLAS

DVCS HERMES Recoil-Detector Expected accuracies for 2 years of data taking

 g 1 = - longitudinal quark spin, ,  q    5 q Transverse quark polarisation, ‘Transversity‘ h 1 Complete description of nucleon in leading order QCD: 3 distribution functions f 1 = Quark momenta,  q   q h 1 = - transverse quark spin, ,  q    5 q     Importance of h 1 measurement: coupling to gluons smaller than in longitudinal case  Q 2 evolution is weaker  QCD test  Redistribution of ang. moment. between quarks and gluons is smaller:  <  < 1  Lattice QCD:  = 0,18(10) and  = 0,56(9) h 1 is chiral odd, can only be measured in conjunction with other chiral odd distribution (pol. Drell-Yan) or fragmentation function (SIDIS)

P.R. D64 (2001) Transverse quark polarisation, ‘Transversity‘ h 1

‘Transversity‘ h 1 - Model calculations A UL sin   S L (M/Q)  z a 2 x [h L a (x) H 1  a (z) - x h 1L  a (x) H a (z)/z +....] - S T  z a 2 x h 1 a (x) H 1  a (z) S L >> S T Collins fragmentation function  0.33 z Example:  Quark Soliton Model Efremov et al., Eur. Phys. J. C24 (2002) 407 Need measurements with transverse target polarisation

Azimuthal asymmetries: Collins vs Sivers effect 2 different possible sources for azimuthal asymmetry: product of chiral-odd transversity distribution h 1 (x) and chiral-odd fragmentation function H 1  (z) (Collins) product of T-odd distribution function f 1T  and familiar unpolarised fragmentation function D 1 (z) (Sivers) Longitudinally polarised target: Collins and Sivers effect indistinguishable Transversely polarised target: Collins andSivers distinguishable Lepton Targetspin Hadron lsls lhlh moment; moment

Prospects for h 1 measurements, HERMES & COMPASS Deuteron (LiD) COMPASS: Projection for 12 days LiD, (h 1 = g 1 ) SMC magnet L = cm -2 per day E  = 160 GeV x x  e a 2 h 1 a (x) HERMES: Expected accuray for 2 years of data taking with transversely polarised proton target V.A. Korotkov et al., Eur. Phys. J. C18 (01) 639

Prospects HERMES ( ): Transversaly polarised target - h 1, g 2 unpolarised high density target: DVCS - L q COMPASS ( ? ): Full polarisation program, especially  G RHIC ( ?) [p p  W  X, jets]:  u(x),  d(x),  u(x),  d(x),  G SLAC-E161 ( ?) [  p  D X]:  G Detailed investigation of h 1 and GPDs via exclusive processes requires a new generation of polarised lepton nucleon scattering experiments with high luminosity and high resolution like ELFE, TESLA-N, EVELIN, JLAB-12GeV