V.Ivanchenko16.07.02 Salamanca1 Geant4: Electromagnetic Processes 1  Introduction  Interfaces  PhysicsList  Optical process.

Slides:



Advertisements
Similar presentations
Experimental Particle Physics
Advertisements

HEP Experiments Detectors and their Technologies Sascha Marc Schmeling CERN.
Detection of Gamma-Rays and Energetic Particles
Electromagnetic Physics I Tatsumi KOI SLAC National Accelerator Laboratory (strongly based on Michel Maire's slides) Geant4 v9.2.p02 Standard EM package.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Hadronic and Electromagnetic Physics: special applications V.Ivanchenko BINP, Novosibirsk, Russia & CERN, Geneve, Switzerland.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
14 User Documents and Examples I SLAC Geant4 Tutorial 3 November 2009 Dennis Wright Geant4 V9.2.p02.
Electromagnetic Physics I Joseph Perl SLAC National Accelerator Laboratory (strongly based on Michel Maire's slides) Geant4 v9.3.p01 Standard EM package.
Simulating Optical Processes Using Geant4
14 Overview of Geant4 Examples 2 nd Finnish Geant4 Workshop 6-7 June 2005 Dennis Wright (SLAC)
Alex Howard Imperial College Geant4 Users Workshop, CERN, 13 th November 2002 LowE EM PartII 1 Low Energy Electromagnetic Physics PART II Alex Howard.
17-19 Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan 2007 Geant4 Japan.
Physics III: Cuts, Decay and Optical Physics Geant4 Tutorial at Jefferson Lab 10 July 2012 Dennis Wright (SLAC) Geant4 9.6 beta.
Geant4: Electromagnetic Processes 2 V.Ivanchenko, BINP & CERN
Tabular Editors for Geant4 Geant4 Geometry Editor and Geant4 Physics Editor CHEP 2000 at Padova Hajime Yoshida Naruto University of Education.
14 Overview of Geant4 Examples Geant4 Tutorial 8-10 March 2004 Dennis Wright (SLAC)
Particles and Processes The full set of lecture notes of this Geant4 Course is available at
IEEE Nuclear Science Symposium and Medical Imaging Conference Short Course The Geant4 Simulation Toolkit Sunanda Banerjee (Saha Inst. Nucl. Phys., Kolkata,
Marc Verderi - IN2P3 SLAC User's Workshop.1 Introduction G EANT4 has been designed to allow users to implement new processes the kernel will treat as any.
Adding a new process CERN User’s Workshop 13 November 2002 V.Ivanchenko, CERN, Budker Institute for Nuclear Physics Based on presentation of M.Verderi.
Tuesday, Nov 9th 9:30-12:30 –Visualization attributes –Physics processes 14:00-17:00 –Kinematics and event generation (from yesterday) Particle gun –Boolean.
Overview of Geant4 Physics 2 nd Finnish Geant4 Workshop 6-7 June 2005 Dennis Wright (SLAC)
Geant4 Collaboration 1 Electromagnetic Physics Authors: P. Gumplinger, M. Maire, P. Nieminen, M.G. Pia, L. Urban Budker Inst. of Physics IHEP Protvino.
Lecture 1.3: Interaction of Radiation with Matter
User Documents and Examples I Sébastien Incerti Slides thanks to Dennis Wrigth, SLAC.
Geant4 Electromagnetic Physics Introduction V.Ivanchenko, M.Maire, M.Verderi  Process interface  Physics categories  Electromagnetic physics  PhysicsList.
Physics I: Physics Lists Geant4 Tutorial at Jefferson Lab 10 July 2012 Dennis Wright (SLAC) Geant4 9.6 beta.
Geant4 Physics List V.Ivanchenko Thanks to P.Gumplinger, M.Maire, H.P.Wellisch  General Physics  Electromagnetic Physics  Optical Photons  Hadronic.
Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP),
1 Physics I: Physics Lists Paris Geant4 Tutorial 4 June 2007 Marc Verderi Laboratoire Leprince-Ringuet (Heavily copied from D. Wright) Geant4 V8.3.
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2/2) 3.Collider Experiments.
1 Status and Plans for Geant4 Physics Linear Collider Simulation Workshop III 2-5 June 2004 Dennis Wright (SLAC)
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Detector Simulation Presentation # 3 Nafisa Tasneem CHEP,KNU  How to do HEP experiment  What is detector simulation?
17-19 Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan 2007 Geant4 Collaboration.
Physics processes in general SLAC User’s Workshop February 18 – Marc Verderi Ecole Polytechnique - LLR.
V.Ivanchenko Salamanca1 Geant4: Hadronic Processes 1  Cross sections  Secondary generators  Nuclear interactions at rest  CHIPS model.
Physics I: Physics Lists Puebla Geant4 Tutorial 15 June 2010 Dennis Wright Geant4 V9.3.p01.
1 Calorimetry studies for future lepton colliders Andrea Delgado, Texas A&M University SIST Program Final Presentation, Fermilab August 2013.
1 Giuseppe G. Daquino 26 th January 2005 SoFTware Development for Experiments Group Physics Department, CERN Background radiation studies using Geant4.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
Physics II : processes Paris Geant4 Tutorial 5 June 2007 Marc Verderi Ecole Polytechnique - LLR.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
New approach of Geant4 Low Energy EM models (from version 9.3) Luciano Pandola INFN, Laboratori del Gran Sasso MaGe Joint Workshop, Munich, January 2010.
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
Geant4 KISTI Tutorial Marc Verderi LLR – Ecole polytechnique October 2012 Physics II: Overview, Processes, Production Threshold.
Makoto Asai.  In the past, material is considered only if it appears in the mass (tracking) world. The user might define parallel world(s) for artificial.
Alex Howard, Imperial College Slide 1 July 2 nd 2001 Underground Project UNDERGROUND PROJECT – Overview and Goals Alex Howard Imperial College, London.
Electromagnetic and hadronic physics in Geant4
Particles and Processes
“Performance test of a lead glass
Methods of Experimental Particle Physics
Particles and Processes
Physics III: Cuts, Decay and Optical Physics
Geant4: Electromagnetic Processes 3 V.Ivanchenko, BINP & CERN
Physics I: Physics Lists
Particles and Processes
Model Approach for Standard EM Physics
Hadronic Physics in Geant4
Low Energy Electromagnetic Physics PART II
Particles and Processes
User Application
The full set of lecture notes of this Geant4 Course is available at
Geant4: Electromagnetic Physics 4 V.Ivanchenko, BINP & CERN
The full set of lecture notes of this Geant4 Course is available at
Introduction to physics and processes
The full set of lecture notes of this Geant4 Course is available at
Monte Carlo /12/25.
Particles and Processes
Presentation transcript:

V.Ivanchenko Salamanca1 Geant4: Electromagnetic Processes 1  Introduction  Interfaces  PhysicsList  Optical process

V.Ivanchenko Salamanca2 Radiation effects  Charged particles lost energy primary to ionization  For high energy electrons radiation losses dominates  Gammas convert to e+e- or transform energy to atomic electrons  Heavy particles interact with atomic nucleus

V.Ivanchenko Salamanca3 What is tracked in Geant4 ? G4Track G4ParticleDefinition G4DynamicParticle G4ProcessManager Propagated by the tracking, Snapshot of the particle state. Momentum, pre-assigned decay… The « particle type »:  G4Electron,  G4PionPlus… « Hangs » the physics sensitivity; The physics processes; Process_2 Process_1 Process_3 The classes involved in the building the « physics list » are: The G4ParticleDefinition concrete classes; The G4ProcessManager; The processes;

V.Ivanchenko Salamanca4 Geant4 physics processes There are following processes: Electromagnetic Hadronic Decay Optical Transportation Parameterized Subcategories of Electromagnetic domain: Muons Lowenergy Standard Xrays Utils

V.Ivanchenko Salamanca5 Geant4 physics processes Physics is described via abstract interface called process associated with particles Process provides Interaction Lenths, StepLimits, and DoIt methods Process active AlongStep, PostStep, AtRest Distinction between process and model – one process may includes many models Generation of final state is independent from the access and use of cross sections and from tracking

V.Ivanchenko Salamanca6 PhysicsList  It is one of the « mandatory user classes »; –Defined in source/run  Defines the three pure virtual methods: –ConstructParticles(); –ConstructProcesses(); –SetCuts();  Concrete PhysicsList needs to inherit from G4VUserPhysicsList;  For interactivity G4UserPhysicsListMessenger can be used to handle PhysicsList parameters

V.Ivanchenko Salamanca7 Processes ordering  Ordering of following processes is critical: –Assuming n processes, the ordering of the AlongGetPhysicalInteractionLength should be: [n-2] … [n-1] multiple scattering [n] transportation  Why ? –Processes return a « true path length »; –The multiple scattering « virtually folds up » this true path length into a shorter « geometrical » path length; –Based on this new length, the transportation can geometrically limits the step.  Other processes ordering usually do not matter. 

V.Ivanchenko Salamanca8 AddTransportation void G4VUserPhysicsList::AddTransportation() { G4Transportation* theTransportationProcess= new G4Transportation(); // loop over all particles in G4ParticleTable theParticleIterator->reset(); while( (*theParticleIterator)() ){ G4ParticleDefinition* particle = theParticleIterator->value(); G4ProcessManager* pmanager = particle->GetProcessManager(); if (!particle->IsShortLived()) { if ( pmanager == 0) { G4Exception("G4VUserPhysicsList::AddTransportation : no process manager!"); } else { // add transportation with ordering = ( -1, "first", "first" ) pmanager->AddProcess(theTransportationProcess); pmanager->SetProcessOrderingToFirst(theTransportationProcess, idxAlongStep); pmanager->SetProcessOrderingToFirst(theTransportationProcess, idxPostStep); } } }

V.Ivanchenko Salamanca9 Gamma processes  Discrete processes - only PostStep actions; –Use function AddDiscreteProcess; –pmanager is the G4ProcessManager of the gamma; –Assume the transportation has been set by AddTransportation;  Code sample: // Construct processes for gamma: pmanager->AddDiscreteProcess(new G4GammaConversion()); pmanager->AddDiscreteProcess(new G4ComptonScattering()); pmanager->AddDiscreteProcess(new G4PhotoElectricEffect());

V.Ivanchenko Salamanca10 Electron processes // Construct processes for positron G4VProcess* theMultipleScattering = new G4MultipleScattering(); G4VProcess* eIonisation = new G4eIonisation(); G4VProcess* eBremsstrahlung = new G4eBremsstrahlung(); // add processes pmanager->AddProcess(theMultipleScattering); pmanager->AddProcess(eIonisation); pmanager->AddProcess(eBremsstrahlung); // set ordering for AlongStepDoIt pmanager->SetProcessOrdering(theMultipleScattering, idxAlongStep, 1); pmanager->SetProcessOrdering(eIonisation, idxAlongStep, 2); // set ordering for PostStepDoIt pmanager->SetProcessOrdering(theMultipleScattering, idxPostStep, 1); pmanager->SetProcessOrdering(eIonisation, idxPostStep, 2); pmanager->SetProcessOrdering(eBremsstrahlung, idxPostStep, 3);

V.Ivanchenko Salamanca11 Positrons processes G4VProcess* theeplusMultipleScattering = new G4MultipleScattering(); G4VProcess* theeplusIonisation = new G4eIonisation(); G4VProcess* theeplusBremsstrahlung = new G4eBremsstrahlung(); G4VProcess* theeplusAnnihilation = new G4eplusAnnihilation(); pmanager->AddProcess(theeplusMultipleScattering); pmanager->AddProcess(theeplusIonisation); pmanager->AddProcess(theeplusBremsstrahlung); pmanager->AddProcess(theeplusAnnihilation); pmanager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest); pmanager->SetProcessOrdering(theeplusMultipleScattering, idxAlongStep, 1); pmanager->SetProcessOrdering(theeplusIonisation, idxAlongStep, 2); pmanager->SetProcessOrdering(theeplusMultipleScattering, idxPostStep, 1); pmanager->SetProcessOrdering(theeplusIonisation, idxPostStep, 2); pmanager->SetProcessOrdering(theeplusBremsstrahlung, idxPostStep, 3); pmanager->SetProcessOrdering(theeplusAnnihilation, idxPostStep, 4);

V.Ivanchenko Salamanca12 Hadrons EM processes  Hadrons (pions, kaons, proton,…)  Light ions (deuteron, triton, alpha)  Heavy ions (GenericIon)  Example: G4VProcess* theMultipleScattering = new G4MultipleScattering(); G4VProcess* hIonisation = new G4hIonisation(); pmanager->AddProcess(theMultipleScattering); pmanager->AddProcess(hIonisation); pmanager->SetProcessOrdering(theMultipleScattering, idxAlongStep, 1); pmanager->SetProcessOrdering(hIonisation, idxAlongStep, 2); pmanager->SetProcessOrdering(theMultipleScattering, idxPostStep, 1); pmanager->SetProcessOrdering(hIonisation, idxPostStep, 2);

V.Ivanchenko Salamanca13 PhysicsList  In contrary to other codes Geant4 requires from users to build PhysicsList  Novice examples –N02: Simplified tracker geometry with uniform magnetic field –N03: Simplified calorimeter geometry –N04: Simplified collider detector with a readout geometry  Extended examples  Advance examples

V.Ivanchenko Salamanca14 Optical Photon Processes in GEANT4 Concept of “optical Photon” in G4 λ >> atomic spacing G4OpticalPhoton: wave like nature of EM radiation G4OpticalPhoton G4Gamma (no smooth transition) When generated polarisation should be set: aphoton->SetPolarization(ux,uy,uz); // unit vector!!!

V.Ivanchenko Salamanca15 Optical Photon Processes in GEANT4 Optical photons generated by following processes (processes/electromagnetic/xrays): Scintillation Cherenkov Transition radiation Optical photons have following physics processes (processes/optical/): Refraction and Reflection at medium boundaries Bulk Absorption Rayleigh scattering ExampleN06 at /examples/novice/N06

V.Ivanchenko Salamanca16 Optical Photon Processes in GEANT4  Material properties should be defined for G4Scintillation process, so only one type of scintillators can be defined in the run  G4Cherenkov is active only if for the given material an index of refraction is provided  For simulation of optical photons propogation G4OpticalSurface should be defined for given optical system

V.Ivanchenko Salamanca17 Conclusion remarks  Using Geant4 examples novice user can design his/her PhysicsList without detailed studying of interaction of particles with matter  Default values of internal model parameters are reasonably defined  To estimate the accuracy of simulation results indeed one have to study Geant4 in more details  It is true for any simulation software!