23.5 Features of homogeneous catalysis A Catalyst is a substance that accelerates a reaction but undergoes no net chemical change. Enzymes are biological.

Slides:



Advertisements
Similar presentations
Polymerization kinetics
Advertisements

22.6 Elementary reactions Elementary reactions: reactions which involve only a small number of molecules or ions. A typical example: H + Br 2 → HBr + Br.
Chapter 12 Chemical Kinetics
Enzyme Kinetics, Inhibition, and Control
Chapter 7 Chem 341 Suroviec Fall I. Introduction The structure and mechanism can reveal quite a bit about an enzyme’s function.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 9.
Chemical kinetics: accounting for the rate laws
Enzymes. What is an enzyme? globular protein which functions as a biological catalyst, speeding up reaction rate by lowering activation energy without.
General Features of Enzymes Most biological reactions are catalyzed by enzymes Most enzymes are proteins Highly specific (in reaction & reactants) Involvement.
Chapter 14 Chemical Kinetics
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 15 Tuesday 3/4/08 Enzymes Michealis-Menten Kinetics Lineweaver-Burk Plot Enzyme Inhibition.
Enzyme Kinetics and Catalysis II 3/24/2003. Kinetics of Enzymes Enzymes follow zero order kinetics when substrate concentrations are high. Zero order.
Enzyme Catalysis (26.4) Enzymes are catalysts, so their kinetics can be explained in the same fashion Enzymes – Rate law for enzyme catalysis is referred.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Inhibited Enzyme Kinetics Inhibitors may bind to enzyme and reduce their activity. Enzyme inhibition may be reversible or irreversible. For reversible.
Chapter 14 Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:
Self-test 22.8 Derive the rate law for the decomposition of ozone in the reaction 2O3(g) → 3O2(g) on the basis of the following mechanism O3 → O2 + O.
22.5 The temperature dependence of reaction rates Arrhenius equation: A is the pre-exponential factor; E a is the activation energy. The two quantities,
MALIK ALQUB MD. PHD. BIOENERGETICS. 1 st Law of Thermodynamics The First Law of Thermodynamics states that energy cannot be created or destroyed but only.
8–1 John A. Schreifels Chemistry 212 Chapter 14-1 Chapter 14 Rates of Reaction.
The Behavior of Proteins: Enzymes
Chapter 15 Rates of Reaction.
Chemistry. Chemical Kinetics - 2 Session Objectives 1.Methods of determining order of a reaction 2.Theories of chemical kinetics 3.Collision theory 4.Transition.
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L10b-1 Review: Nonelementary Reaction Kinetics.
Enzyme kinetics Why study the rate of enzyme catalyzed reactions? Study of reaction rates is an important tool to investigate the chemical mechanism of.
What is enzyme catalysis? A catalyst is a substance that accelerates a chemical reaction without itself undergoing any net change.
23.6 Enzymes Three principal features of enzyme-catalyzed reactions: 1. For a given initial concentration of substrate, [S] 0, the initial rate of product.
ENZYMES. are biological catalyst are mostly proteinaceous in nature, but RNA was an early biocatalyst are powerful and highly specific catalysts.
KAPITOLA 3 Enzymová katalýza I katylytická aktivita enzymů katylytická aktivita enzymů interakce enzym - substrát interakce enzym - substrát koenzymy koenzymy.
Kinetics of Enzyme Reactions Srbová Martina. E + S ES E + P k1k1 k -1 k cat rapid reversible reaction slow irreversible reaction Rate of the conversion.
C h a p t e r 12 Chemical Kinetics. Reaction Rates01 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant.
SURVEY OF BIOCHEMISTRY Enzyme Kinetics and Inhibition
Chemical kinetics Mrs. Khadijah Hanim bt Abdul Rahman Sem II 2011/2012
Quiz #3 Define Enzyme Classes Systematic naming –Given a reaction (including names) –Use subclass designation if appropriate Catalytic mechanisms –Define.
Rules for deriving rate laws for simple systems 1.Write reactions involved in forming P from S 2. Write the conservation equation expressing the distribution.
Picture of an enzymatic reaction. Velocity =  P/  t or -  S/  t Product Time.
Chapter 14 Chemical Kinetics (part 2). The Collision Model Goal: develop a model that explains why rates of reactions increase as concentration and temperature.
Chapter 14 Chemical Kinetics (part 2). The Collision Model Goal: develop a model that explains why rates of reactions increase as concentration and temperature.
Chapter 121 Chapter 12: Kinetics; Outline 1. Introduction  2. macroscopic determination of rate (experimental) define rate  define rate law, rate constant,
Paul D. Adams University of Arkansas Mary K. Campbell Shawn O. Farrell Chapter Six The Behavior of Proteins:
Lecture – 4 The Kinetics of Enzyme-Catalyzed Reactions Dr. AKM Shafiqul Islam School of Bioprocess Engineering University Malaysia Perlis
Mechanisms of enzyme inhibition Competitive inhibition: the inhibitor (I) binds only to the active site. EI ↔ E + I Non-competitive inhibition: binds to.
The balanced chemical equation provides information about the beginning and end of reaction. The reaction mechanism gives the path of the reaction. Mechanisms.
Catalysis.
Enzyme Kinetics.
Michaelis-Menten kinetics
Chemistry 232 Chemical Kinetics.
Enzyme Kinetics Velocity (V) = k [S]
Introduction to enzymes, enzyme catalyzed reactions and
Enzymes- biological catalysts Enzymes are proteins, eg. amylase, lipase, protease Activity depends on tertiary and quaternary structure and the specificity.
Preequilibrium Approximation (26.2) Some reaction mechanisms involve intermediate reactions that are reversible – Inverse temperature dependence of the.
Enzyme Kinetics I 10/15/2009. Enzyme Kinetics Rates of Enzyme Reactions Thermodynamics says I know the difference between state 1 and state 2 and  G.
Rmax and Km (26.4) Constants from Michaelis-Menten equation give insight into qualitative and quantitative aspects of enzyme kinetics Indicate if enzyme.
R max and K m (26.4) Constants from Michaelis-Menten equation give insight into qualitative and quantitative aspects of enzyme kinetics Constants – Indicate.
Enzyme Inhibition (26.4) Inhibition is a term used to describe the inability of a product being formed due to the presence of another substance (the inhibitor)
Mechanisms of enzyme inhibition
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 9.
Biochemical Reaction Rate: Enzyme Kinetics What affect do enzymes and enzyme inhibitors have on enzyme catalysis on a quantitative level? Lipitor inhibits.
KAPITOLA 3 Enzymová katalýza I katylytická aktivita enzymů katylytická aktivita enzymů interakce enzym - substrát interakce enzym - substrát koenzymy koenzymy.
Title: Lesson 4 B.2 Enzymes Learning Objectives: – Describe the structure and the function of an enzyme – Identify and explain the factors that affect.
Lecture 5:Enzymes Ahmad Razali Ishak
Chemical Kinetics. Fundamental questions: 1.Will it take place? Thermodynamics 2.If it does, how long will it take to reach completion or equilibrium?
Chapter 30 Kinetic Methods of Analysis. In kinetic methods, measurements are made under dynamic conditions in which the concentrations of reactants and.
23.2 Explosions Thermal explosion: a very rapid reaction arising from a rapid increase of reaction rate with increasing temperature. Chain-branching.
Enzymes.
23.2 Explosions Thermal explosion: a very rapid reaction arising from a rapid increase of reaction rate with increasing temperature. Chain-branching.
Enzyme Kinetics Nilansu Das Dept. of Molecular Biology
23.4 Chain polymerization Occurs by addition of monomers to a growing polymer, often by a radical chain process. Rapid growth of an individual polymer.
Presentation transcript:

23.5 Features of homogeneous catalysis A Catalyst is a substance that accelerates a reaction but undergoes no net chemical change. Enzymes are biological catalysts and are very specific. Homogeneous catalyst: a catalyst in the same phase as the reaction mixture. heterogeneous catalysts: a catalyst exists in a different phase from the reaction mixture.

Example: Bromide-catalyzed decomposition of hydrogen peroxide: 2H 2 O 2 (aq) →2H 2 O(l) + O 2 (g) is believed to proceed through the following pre-equilibrium: H 3 O + + H 2 O 2 ↔H 3 O H 2 O H 3 O Br - →HOBr + H 2 O v = k[H 3 O 2 + ][Br - ] HOBr + H 2 O 2 → H 3 O + + O 2 + Br - (fast) The second step is the rate-determining step. Thus the production rate of O 2 can be expressed by the rate of the second step. The concentration of [H 3 O 2 + ] can be solved [H 3 O 2 + ] = K[H 2 O 2 ][H 3 O + ] Thus The rate depends on the concentration of Br - and on the pH of the solution (i.e. [H 3 O + ]).

Exercise 23.4b: Consider the acid-catalysed reaction (1) HA + H + ↔ HAH + k 1, k 1 ’, both fast (2) HAH + + B → BH + + AH k 2, slow Deduce the rate law and show that it can be made independent of the specific term [H + ] Solution:

23.6 Enzymes Three principal features of enzyme-catalyzed reactions: 1. For a given initial concentration of substrate, [S] 0, the initial rate of product formation is proportional to the total concentration of enzyme, [E] For a given [E] 0 and low values of [S] 0, the rate of product formation is proportional to [S] For a given [E] 0 and high values of [S] 0, the rate of product formation becomes independent of [S] 0, reaching a maximum value known as the maximum velocity, v max.

Michaelis-Menten mechanism E + S → ES k 1 ES→ E + Sk 2 ES→ P + E k 3 The rate of product formation: To get a solution for the above equation, one needs to know the value of [ES] Applying steady-state approximation Because [E] 0 = [E] + [ES], and [S] ≈ [S] 0

Michaelis-Menten equation can be obtained by plug the value of [ES] into the rate law of P: Michaelis-Menten constant: K M can also be expressed as [E][S]/[ES]. Analysis: 1. When [S] 0 << K M, the rate of product formation is proportional to [S] 0 : 2. When [S] 0 >> K M, the rate of product formation reaches its maximum value, which is independent of [S] 0 : v = v max = k 3 [E] 0

With the definition of K M and v max, we get The above Equation can be rearranged into: Therefore, a straight line is expected with the slope of K M /v max, and a y- intercept at 1/v max when plotting 1/v versus 1/[S] 0. Such a plot is called Lineweaver-Burk plot, The catalytic efficiency of enzymes Catalytic constant (or, turnover number) of an enzyme, k cat, is the number of catalytic cycles (turnovers) performed by the active site in a given interval divided by the duration of the interval. Catalytic efficiency, ε, of an enzyme is the ratio k cat /K M,

Example: The enzyme carbonic anhydrase catalyses the hydration of CO 2 in red blood cells to give bicarbonate ion: CO 2 + H 2 O →HCO H + The following data were obtained for the reaction at pH = 7.1, 273.5K, and an enzyme concentration of 2.3 nmol L -1. [CO 2 ]/(mmol L -1 ) rate/(mol L -1 s -1 )2.78x x x x10 -4 Determine the catalytic efficiency of carbonic anhydrase at 273.5K Answer: Make a Lineweaver-Burk plot and determine the values of K M and v max from the graph. The slope is 40s and y-intercept is 4.0x10 3 L mol -1 s v max = = 2.5 x10 -4 mol L -1 s -1 K M = (2.5 x10 -4 mol L -1 s -1 )(40s) = 1.0 x mol L -1 k cat = = 1.1 x 10 5 s -1 ε = = 1.1 x 10 7 L mol -1 s -1

Mechanisms of enzyme inhibition Competitive inhibition: the inhibitor (I) binds only to the active site. EI ↔ E + I Non-competitive inhibition: binds to a site away from the active site. It can take place on E and ES EI ↔ E + I ESI ↔ ES + I Uncompetitive inhibition: binds to a site of the enzyme that is removed from the active site, but only if the substrate us already present. ESI ↔ ES + I The efficiency of the inhibitor (as well as the type of inhibition) can be determined with controlled experiments

Autocatalysis Autocatalysis: the catalysis of a reaction by its products A + P →2P The rate law is = k[A][P] To find the integrated solution for the above differential equation, it is convenient to use the following notations [A] = [A] 0 - x; [P] = [P] 0 + x One gets = k([A] 0 - x)( [P] 0 + x) integrating the above ODE by using the following relation gives or rearrange into with a=([A] 0 + [P] 0 )k and b = [P] 0 /[A] 0