Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.11 Original citation: Dougherty, C. (2012) EC220 - Introduction.

Slides:



Advertisements
Similar presentations
EC220 - Introduction to econometrics (chapter 2)
Advertisements

Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: two-stage least squares Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.13 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: model b: properties of the regression coefficients Original citation:
EC220 - Introduction to econometrics (chapter 1)
EC220 - Introduction to econometrics (chapter 3)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.22 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.19 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.16 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: exercise 6.7 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.16 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: introduction to maximum likelihood estimation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 7)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: types of regression model and assumptions for a model a Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: plims and consistency Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 13) Slideshow: stationary processes Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 7) Slideshow: exercise 7.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (chapter 7)
EC220 - Introduction to econometrics (chapter 9)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: exercise 3.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (chapter 2)
EC220 - Introduction to econometrics (chapter 9)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.22 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: prediction Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
1 This sequence shows why OLS is likely to yield inconsistent estimates in models composed of two or more simultaneous relationships. SIMULTANEOUS EQUATIONS.
1 PREDICTION In the previous sequence, we saw how to predict the price of a good or asset given the composition of its characteristics. In this sequence,
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: Friedman Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 7) Slideshow: weighted least squares and logarithmic regressions Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.9 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: exercise 1.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (revision lectures 2011) Slideshow: autocorrelation Original citation: Dougherty, C. (2011)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.24 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: exercise 5.2 Original citation: Dougherty, C. (2012) EC220 - Introduction.
1 We will now look at the properties of the OLS regression estimators with the assumptions of Model B. We will do this within the context of the simple.
1 COVARIANCE, COVARIANCE AND VARIANCE RULES, AND CORRELATION Covariance The covariance of two random variables X and Y, often written  XY, is defined.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (revision lectures 2011) Slideshow: dummy variables Original citation: Dougherty, C. (2011)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: exercise 6.13 Original citation: Dougherty, C. (2012) EC220 - Introduction.
INSTRUMENTAL VARIABLES 1 Suppose that you have a model in which Y is determined by X but you have reason to believe that Assumption B.7 is invalid and.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
1 STOCHASTIC REGRESSORS Until now we have assumed that the explanatory variables in a regression model are nonstochastic, that is, that they do not have.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
Introduction to Econometrics, 5th edition
Presentation transcript:

Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: exercise 2.11 Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 2). [Teaching Resource] © 2012 The Author This version available at: Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms

2.11 An investigator correctly believes that the relationship between two variables X and Y is given by Y =  1 +  2 X + u Given a sample of n observations on Y, X, and a third variable Z, which is not a determinant of Y, the investigator estimates  2 as Discuss the properties of this estimator. It can be shown that its population variance is given by EXERCISE

2 As always in an analysis of the properties of an estimator, the first step is to substitute for Y from the true relationship.

3 EXERCISE 2.11 The  1 terms cancel. We rearrange the rest of the numerator.

4 Hence we can decompose the estimator into the true value and an error term. EXERCISE 2.11

5 We will now investigate whether the estimator is biased. We take expectations and use the first expected value rule to decompose the expression into two terms.

6 EXERCISE 2.11 E(  2 ) is just  2 since  2 is a constant. The denominator of the error term can be taken out of the expectation as a multiplicative factor since we are assuming that both Z and X are nonstochastic.

7 EXERCISE 2.11 In the numerator of the error term we have used the fact that the expectation of a sum is equal to the sum of the expectations (first expected value rule).

8 EXERCISE 2.11 We again use the second expected value rule to take the term involving Z out of the expectation, Z and its mean being nonstochastic.

9 EXERCISE 2.11 The expected values of u i and its mean are both zero by virtue of Assumption A.3. Hence the estimator is unbiased.

10 EXERCISE 2.11 So why do we prefer the OLS estimator? It is not enough to say that Z is not a determinant of Y, and therefore it should not be a component of an estimator. Later on, we will be using estimators that incorporate extraneous variables.

11 It can be shown that the variance of the estimator is equal to the variance of the OLS estimator multiplied by the reciprocal of the correlation between X and Z. EXERCISE 2.11

12 EXERCISE 2.11 If Z were an exact linear function of X, this estimator would yield the same estimates as OLS and its population variance be the same.

13 EXERCISE 2.11 In general, however, the correlation coefficient squared will be less than 1 and the variance of the estimator will be greater, in which case the estimator is inefficient.

Copyright Christopher Dougherty 1999–2006. This slideshow may be freely copied for personal use