Chapter 17 Oxidation and Reduction Redox Oxidation Numbers Balancing by Redox Quiz Corrections Electrolysis Lab A-Electrolysis Electrolysis Lab Results.

Slides:



Advertisements
Similar presentations
IB topic 9 Oxidation-reduction
Advertisements

Chemical Equations Preparation for College Chemistry Columbia University Department of Chemistry.
ELECTROCHEMISTRY Chapter 18
CHEMISTRY 161 Oxidation-Reduction Reactions Chapter 6.
VIII. Oxidation-Reduction J Deutsch An oxidation-reduction (redox) reaction involves the transfer of electrons (e - ). (3.2d) The oxidation numbers.
Lecture 263/30/07. E° F 2 (g) + 2e - ↔ 2F Ag + + e - ↔ Ag (s)+0.80 Cu e - ↔ Cu (s)+0.34 Zn e - ↔ Zn (s)-0.76 Quiz 1. Consider these.
1 Chapter 5 Chemical Reactions 5.3 Oxidation-Reduction Reactions.
CHEMISTRY 161 Chapter 4 ‘4’
Prentice Hall © 2003Chapter 20 Zn added to HCl yields the spontaneous reaction Zn(s) + 2H + (aq)  Zn 2+ (aq) + H 2 (g). The oxidation number of Zn has.
Lecture 223/19/07. Displacement reactions Some metals react with acids to produce salts and H 2 gas Balance the following displacement reaction: Zn (s)
Chapter 20 Electrochemistry
An informative exploration by JC and Petey B.. Oxidation Numbers All oxidation and reduction reactions involve the transfer of electrons between substances.
Electrochemistry Chapter 11 Web-site:
Chapter 18 Electrochemistry
Reduction Potential and Cells
Electrochemistry The first of the BIG FOUR. Introduction of Terms  Electrochemistry- using chemical changes to produce an electric current or using electric.
Electrochemistry Chapter 19.
CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Oxidation-Reduction Reactions
INTRODUCTORY CHEMISTRY INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin 1 Chapter 17 © 2011 Pearson Education,
ADVANCED PLACEMENT CHEMISTRY ELECTROCHEMISTRY. Galvanic cell- chemical energy is changed into electrical energy (also called a voltaic cell) (spontaneous)
Redox Reactions and Electrochemistry
Oxidation and Reduction
Redox Reactions and Electrochemistry
GHS Honors Chem Electro- Chemistry. GHS Honors Chem Electrochemistry Electrochemistry is the study of the relationships between electrical energy and.
Warmup Assign oxidation numbers to each element: NaNaClCl 2 H 2 O Ca(OH) 2 NO 3 -
Chapter 17 Oxidation and Reduction Notes One Unit Six Redox Oxidation Numbers Identifying what is oxidized and what is reduced.
1 Oxidation-Reduction Chapter 17 Hein and Arena Eugene Passer Chemistry Department Bronx Community College © John Wiley and Sons, Inc. Version 1.1.
Electrochemistry Unit 13. Oxidation-Reduction Reactions Now for a quick review. For the following reaction determine what is oxidized/reduced/reducing.
Redox Reactions Or How Batteries Work REDOX Reactions The simultaneous transfer of electrons between chemical species. – Actually 2 different reactions.
8–1 Ibrahim BarryChapter 20-1 Chapter 20 Electrochemistry.
CHEM 163 Chapter 21 Spring minute review What is a redox reaction? 2.
Balance Redox Rxns: Fe(OH) 3 + [Cr(OH) 4 ] -1 Fe(OH) 2 + CrO 4 -2.
Electrochemistry and Redox Reactions. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Oxidation Numbers Positive oxidation number Negative oxidation number - Loses partial or total control of electrons in a bond - Gains partial or total.
Activity Series lithiumpotassiummagnesiumaluminumzincironnickelleadHYDROGENcoppersilverplatinumgold Oxidizes easily Reduces easily Less active More active.
Spontaneous Redox Reactions
Electrochemisty Electron Transfer Reaction Section 20.1.
Electrochemistry: Oxidation-Reduction Reactions Zn(s) + Cu +2 (aq)  Zn 2+ (aq) + Cu(s) loss of 2e - gaining to 2e - Zinc is oxidized - it goes up in.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Oxidation/Reduction Reactions REDOX REACTONS! All chemical reactions fall into two categories those that are redox and those that are not redox! Redox.
Unit 5: Everything You Wanted to Know About Electrochemical Cells, But Were Too Afraid to Ask By : Michael “Chuy el Chulo” Bilow And “H”Elliot Pinkus.
Chapter 5 Chemical Quantities and Reactions 5.3 Chemical Changes 1.
Chapter 17 Electrochemistry
Redox reactions half-reactions: Reduction 2Fe e -  2Fe 2+ oxidation Sn 2+  Sn e - 2Fe 3+ + Sn 2+  2Fe 2+ + Sn http:\asadipour.kmu.ac.ir.
Always Ox always change during redox reactions: Oxidation Increase Ox = Oxidation Reduction Decrease Ox = Reduction It’s a redox reaction if:element →
Electrochemistry: Oxidation-Reduction Reactions Zn(s) + Cu +2 (aq)  Zn 2+ (aq) + Cu(s) loss of 2e - gaining to 2e - Zinc is oxidized - it goes up in.
(Redox).  1. Synthesis  2. Decomposition  3. Single Replacement  4. Double Replacement  * Combustion.
CHE1102, Chapter 19 Learn, 1 Chapter 19 Electrochemistry Lecture Presentation.
Redox Reactions & Electrochemical Cells.  Type of reaction based on transfer of electrons between species  Used to be based on gain or loss of O  Now:
1 Chapter 20 Oxidation-Reduction Reactions (Redox Reactions)
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
1 UNIT 7 Reduction / Oxidation Reactions “Redox” and Electrochemistry.
CE Chemistry Module 8. A. Involves electron changes (can tell by change in charge) Cl NaBr 2NaCl + Br 2 B. Oxidation 1. First used.
Chapter 19: Electrochemistry: Voltaic Cells Generate Electricity which can do electrical work. Voltaic or galvanic cells are devices in which electron.
Electrochemistry Chapter 20. oxidation: lose e- -increase oxidation number reduction: gain e- -reduces oxidation number LEO goes GER Oxidation-Reduction.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Chapter 20.  Involves the transfer or flow of electrons in a chemical reaction  This flow of electrons results in changes of charges (aka oxidation.
Chemistry 1 Chapter 22 &23 Oxidation Reduction Reactions The Students will be able to describe redox reactions and assign oxidation numbers to chemical.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
CHAPTER SIX(19) Electrochemistry. Chapter 6 / Electrochemistry Chapter Six Contains: 6.1 Redox Reactions 6.2 Galvanic Cells 6.3 Standard Reduction Potentials.
Unit 7: Notes One Chapter 17 Oxidation and Reduction Redox
Redox Reactions and Electrochemistry
Electrochemistry The batteries we use to power portable computers and other electronic devices all rely on redox reactions to generate an electric current.
Speed Dating Speed Dating H Na Speed Dating Speed Dating K Be.
IX. Oxidation-Reduction
Presentation transcript:

Chapter 17 Oxidation and Reduction Redox Oxidation Numbers Balancing by Redox Quiz Corrections Electrolysis Lab A-Electrolysis Electrolysis Lab Results Concept Check Assignment Quiz-Balancing/Electrolysis Lab C Faraday’s Lab Electrolysis Quiz Correction Lab B Voltaic Cell Pages

Notes One Unit Twelve Redox Oxidation Numbers Balancing by Redox

Redox Burning: C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O+ Heat Rusting Iron: 4Fe + 3O 2  2Fe 2 O 3 + Heat Oxidation - Loss of e -1. Na(s)  Na +1 +1e -1 Reduction - Gain of e -1. Cl 2 + 2e -1  2Cl -1 Number line (Oxidation…Left or right?)

Demonstration combustible blown through a burner.

Key Elements (99%) H +1 H -1 (99%)O -2 O -1 (Always) Li +1, Na +1, K +1, Rb +1, Cs +1, Fr +1 (Always) Be +2, Mg +2, Ca +2, Ba +2, Sr +2, Ra +2 (Always) Al +3 (with only a metal) F -1, Cl -1, Br -1, I -1 (NO 3 -1 ) ion is always +5 (SO 4 -2 ) ion is always +6

Finding Oxidation Numbers +1-2 H2OH2O 2(+1)+1(-2)=Zero The sum of the oxidation numbers must be equal to _____ for a compound. Find Ox#’s for H 2 O? zero 2(H)+1(O)=Zero H 3 PO 4 Find Ox#’s for H 3 PO 4 ? 3(H)+4(O)=Zero +5 1(P)+ 3(+1)+4(-2)=Zero1(+5)+

Finding Oxidation #’s for Compounds H 3 PO 4 H2OH2O HNO H 2 SO Hg 2 SO Na 2 Cr 2 O H 2 CO (NH 4 ) 2 CO Ca 3 (AsO 4 ) Fe 2 (SO 4 ) Ba(ClO 4 ) Al 2 (CO 3 )

Balancing By Redox Example One H 2 O + P 4 + H 2 SO 4  H 3 PO 4 + H 2 S #1. Find the oxidation #’s. #2. ID the element (i) oxidized and (ii) reduced. #3. Find # of electrons lost or gained. #4. Cross-multiply. #5. Balance using whole # ratios. #6. Find whole number coefficients e -1 lost 8e -1 Gained X8 X Multiply by 1. 12H 2 O +2P 4 +5H 2 SO 4  8H 3 PO 4 +5H 2 S

Balancing By Redox Example Two K 3 PO 4 + Cl 2  P 4 + K 2 O+ KClO 2 #1. Find the oxidation #’s. #2. ID the element (i) oxidized and (ii) reduced. #3. Find # of electrons lost or gained. #4. Cross-multiply. #5. Balance using whole # ratios. #6. Find whole number coefficients e -1 Gained 3e -1 Lost X3 X5 5/223/453 Multiply by 4. 12K 3 PO 4 +10Cl 2  3P 4 +8K 2 O+20KClO 2

Notes Two Unit Twelve Quiz Corrections Electrolysis Lab A-Electrolysis

NO H + +e -  NO 2 (g)+H 2 O Fe 3+ +e -  Fe 2+ I 2 (s)+2e -  2I - Cu + +e -  Cu(s) Cu 2+ +2e -  Cu(s) SO H + +2e -  SO 2 (g) Sn 4+ +2e -  Sn(s) 2H + +2e -  H 2 (g) Pb 2+ +2e -  Pb(s) Sn 2+ +2e -  Sn(s) Ni 2+ +2e -  Ni(s) Co 2+ +2e -  Co(s) 2H + (pH=7)+2e -  H 2 (g) Fe 2+ +2e -  Fe(s) Cr 3+ +3e -  Cr(s) Zn 2+ +2e -  Zn(s) 2H 2 O+2e -  2OH - +H 2 (g) Hg 2+ +2e -  Hg(l) Ag + +e -  Ag(l) /2O 2 (g)+2H + (pH=7)+2e -  H 2 O NO H + +3e -  NO(g)+2H 2 O Br 2 (l)+2e -  2Br /2O 2 (g)+2H + (pH=7)+2e -  H 2 O Reducing Agent Stronger Reducing Agent Loses e - Oxidizing Agent Weaker Oxidizing Agent Gains e - StrongerWeaker

Electrolysis  anode Cathode  e -1  Electrolysis Cathode Anode Electron flow? Mass Gain=? Which is the… Cathode=? Anode=? Cathode(spoon) Mass Loss=? Copper -reduction -oxidation -electric current produced chemical reaction

Electrolysis Lab- Demo KI (aq) What is available to react? K +1 I -1 H2OH2O Anode Reaction lowest reaction on right. Cathode Reaction highest reaction on left.

NO H + +e -  NO 2 (g)+H 2 O Fe 3+ +e -  Fe 2+ I 2 (s)+2e -  2I - Cu + +e -  Cu(s) Cu 2+ +2e -  Cu(s) SO H + +2e -  SO 2 (g) Sn 4+ +2e -  Sn(s) 2H + +2e -  H 2 (g) Pb 2+ +2e -  Pb(s) Sn 2+ +2e -  Sn(s) Ni 2+ +2e -  Ni(s) Co 2+ +2e -  Co(s) 2H + (pH=7)+2e -  H 2 (g) Fe 2+ +2e -  Fe(s) Cr 3+ +3e -  Cr(s) Zn 2+ +2e -  Zn(s) 2H 2 O+2e -  2OH - +H 2 (g) Hg 2+ +2e -  Hg(l) Ag + +e -  Ag(l) /2O 2 (g)+2H + (pH=7)+2e -  H 2 O NO H + +3e -  NO(g)+2H 2 O Br 2 (l)+2e -  2Br /2O 2 (g)+2H + (pH=7)+2e -  H 2 O K +1 I -1 H2OH2O K + +e -  K(s) An: lowest on right. Cath: highest on left. 2I -  I 2 (s)+2e - We see brown:I 2 (s) We see pink. We saw bubbles KI(aq)  

NO H + +e -  NO 2 (g)+H 2 O Fe 3+ +e -  Fe 2+ I 2 (s)+2e -  2I - Cu + +e -  Cu(s) Cu 2+ +2e -  Cu(s) SO H + +2e -  SO 2 (g) Sn 4+ +2e -  Sn(s) 2H + +2e -  H 2 (g) Pb 2+ +2e -  Pb(s) Sn 2+ +2e -  Sn(s) Ni 2+ +2e -  Ni(s) Co 2+ +2e -  Co(s) 2H + (pH=7)+2e -  H 2 (g) Fe 2+ +2e -  Fe(s) Cr 3+ +3e -  Cr(s) Zn 2+ +2e -  Zn(s) 2H 2 O+2e -  2OH - +H 2 (g) Hg 2+ +2e -  Hg(l) Ag + +e -  Ag(l) /2O 2 (g)+2H + (pH=7)+2e -  H 2 O NO H + +3e -  NO(g)+2H 2 O Br 2 (l)+2e -  2Br /2O 2 (g)+2H + (pH=7)+2e -  H 2 O Na + +e -  Na(s) An: lowest(right) Cath: highest(left) H 2 O  1/2O 2 (g)+2H + (pH=7)+2e - We saw bubbles! We saw copper on the pencil tip! Cu +2 SO 4 -2 H2OH2O CuSO 4 (aq)  

NO H + +e -  NO 2 (g)+H 2 O Fe 3+ +e -  Fe 2+ I 2 (s)+2e -  2I - Cu + +e -  Cu(s) Cu 2+ +2e -  Cu(s) SO H + +2e -  SO 2 (g) Sn 4+ +2e -  Sn(s) 2H + +2e -  H 2 (g) Pb 2+ +2e -  Pb(s) Sn 2+ +2e -  Sn(s) Ni 2+ +2e -  Ni(s) Co 2+ +2e -  Co(s) 2H + (pH=7)+2e -  H 2 (g) Fe 2+ +2e -  Fe(s) Cr 3+ +3e -  Cr(s) Zn 2+ +2e -  Zn(s) 2H 2 O+2e -  2OH - +H 2 (g) Hg 2+ +2e -  Hg(l) Ag + +e -  Ag(l) /2O 2 (g)+2H + (pH=7)+2e -  H 2 O NO H + +3e -  NO(g)+2H 2 O Br 2 (l)+2e -  2Br /2O 2 (g)+2H + (pH=7)+2e -  H 2 O Na + +e -  Na(s) An: lowest(right) Cath: highest(left) H 2 O  1/2O 2 (g)+2H + (pH=7)+2e - We saw bubbles. We saw pink. We saw bubbles Na +1 SO 4 -2 H2OH2O Na 2 SO 4 (aq)  

Electrolysis lab A

Notes Three Unit Twelve Electrolysis Lab Results Concept Check Assignment Quiz-Balancing/Electrolysis

Notes Four Unit Twelve Faraday’s Law Lab B This as a chemical process that uses electricity to produce industrial quantities of specific chemicals.

Application of Faraday’s law F = C/mol e - ) A x s = C

Faraday’s Law: Lab B Fe(s) NO 3 -1 e -1 Anode? Cathode? Lose Mass? Gain Mass? Fe +3 3e -1 Fe +3 NO 3 -1 F = C/mole - Amp x second = C

Faraday’s Law Calculation One 3.0 amp x Au +3 +3e -1  Au(s) 60 min 1 hour 1.5 Hour x 60 Sec 1 min =16000C 16000C x 1mole e C = 0.17 mol e mol e -1 x 1 m Au(s) 3mol e -1 =0.056mol Au(s) 0.056mol Au(s)x 197.0gAu 1mol Au = 11g Au 1. Balanced Equation 2. Calculate Coulombs. 3. Calculate moles e Calculate moles of substance. 5. Calculate grams. How many grams of Gold will be plated, using a current of 3.0 amps for 1.5 hours? x

Faraday’s Law Calculation Two 2.0 amp x Ag +1 +1e -1  Ag(s) 45 Hour x 60 Sec 1 min =5400C 5400C x 1mole e C = mol e mol e -1 x 1 m Ag(s) 1mol e -1 =0.056mol Au(s) mol Au(s)x 107.9gAg 1mol Ag = 6.0 g Ag 1. Balanced Equation 2. Calculate Coulombs. 3. Calculate moles e Calculate moles of substance. 5. Calculate grams. How many grams of Silver will be plated, using a current of 2.0 amps for 45 minutes?

Salt Bridge Cu +2 SO 4 -2 Cr +3 SO 4 -2 Cr +3 SO 4 -2 Cathode Anode Cu e -1  Cu Cr  Cr +3 +3e -1 Overall rxn: 2Cr+ x3 x Cu +2  2Cr Cu emf=1.08volts 1.08 Cr +3 3e -1 SO 4 -2 Na +1 Cu(s)Cr(s) Salt Bridge e -1 ? rxn:

Cathode Verses Anode

Formation of Rust Fe(OH) 2 (s) Fe +2 H2OH2O e -1 Fe +2 e -1 H2OH2O O2O2 OH -1 Fe(OH) 2 (s) Fe +2 H2OH2O e -1 Fe +2 e -1 H2OH2O O2O2 OH -1 Fe(OH) 2 (s) O2O2 H2OH2O H2OH2O Fe(OH) 3 (s)

Ion-Electron Method for Balancing

UO I 2  U +4 + IO 3 -1 (Acid) UO 2 +2 I 2  U +4 + H 2 O #2. Bal Non-O Elem. #3. + H 2 O. #4. + H +1. #5. + e -1 to bal +/ H e -1 2 #1. Separate Half-rxn.  IO H 2 O 6 + H e X 1X UO 2 +2 I 2  U +4 + H 2 O10 + H e  IO H 2 O 6 + H e UO U H 2 O4+ H I 2 1  IO

Ion-Electron Method for Balancing IO Ti +3  I 2 + TiO 2 +1 (Acid) IO 3 -1 Ti +3  I 2 + H 2 O #2. Bal Non-O Elem. #3. + H 2 O. #4. + H +1. #5. + e -1 to bal +/ H e #1. Separate Half-rxn.  TiO H 2 O 2 + H e X 5X IO 3 -1 Ti +3  I 2 + H 2 O6 + H e  TiO H 2 O 10 + H e IO I H H 2 O4 + Ti +3 5  TiO

NO H + +e -  NO 2 (g)+H 2 O Fe 3+ +e -  Fe 2+ I 2 (s)+2e -  2I - Cu + +e -  Cu(s) Cu 2+ +2e -  Cu(s) SO H + +2e -  SO 2 (g) Sn 4+ +2e -  Sn(s) 2H + +2e -  H 2 (g) Pb 2+ +2e -  Pb(s) Sn 2+ +2e -  Sn(s) Ni 2+ +2e -  Ni(s) Co 2+ +2e -  Co(s) 2H + (pH=7)+2e -  H 2 (g) Fe 2+ +2e -  Fe(s) Cr 3+ +3e -  Cr(s) Zn 2+ +2e -  Zn(s) 2H 2 O+2e -  2OH - +H 2 (g) Hg 2+ +2e -  Hg(l) Ag + +e -  Ag(l) /2O 2 (g)+2H + (pH=7)+2e -  H 2 O NO H + +3e -  NO(g)+2H 2 O Cl 2 (g)+2e -  2Cl /2O 2 (g)+2H + (pH=7)+2e -  H 2 O K + +e -  K(s) An: lowest(right) Cath: highest(left) H 2 O  1/2O 2 (g)+2H + (pH=7)+2e - We would see bubbles and no pink. We would see solid metal Ni +2 Cl -1 H2OH2O NiCl 2 (aq)  

Balancing By Redox Example Four Cs 3 AsO 4 + Cl 2  As+ Cs 2 O+ CsClO 2 #1. Find the oxidation #’s. #2. ID the element (i) oxidized and (ii) reduced. #3. Find # of electrons lost or gained. #4. Cross-multiply. #5. Balance using whole # ratios. #6. Find whole number coefficients e -1 Gained 3e -1 Lost X3 X5 5/ Multiply by 2. 6Cs 3 AsO 4 + 5Cl 2  6As+4Cs 2 O+10CsClO 2