Colloque national – Assimilation des données : Conclusions générales et perspectives Michael Ghil Ecole Normale Supérieure, Paris, et University of California,

Slides:



Advertisements
Similar presentations
Data-Assimilation Research Centre
Advertisements

Introduction to Data Assimilation NCEO Data-assimilation training days 5-7 July 2010 Peter Jan van Leeuwen Data Assimilation Research Center (DARC) University.
Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.
Role of Air-Sea Interaction on the Predictability of Tropical Intraseasonal Oscillation (TISO) Xiouhua Fu International Pacific Research Center (IPRC)
Assimilation Algorithms: Tangent Linear and Adjoint models Yannick Trémolet ECMWF Data Assimilation Training Course March 2006.
Use of Kalman filters in time and frequency analysis John Davis 1st May 2011.
Initialization Issues of Coupled Ocean-atmosphere Prediction System Climate and Environment System Research Center Seoul National University, Korea In-Sik.
Effects of model error on ensemble forecast using the EnKF Hiroshi Koyama 1 and Masahiro Watanabe 2 1 : Center for Climate System Research, University.
Targetting and Assimilation: a dynamically consistent approach Anna Trevisan, Alberto Carrassi and Francesco Uboldi ISAC-CNR Bologna, Italy, Dept. of Physics.
Observers and Kalman Filters
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
State and Parameter Estimation for a Coupled Ocean-Atmosphere Model Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles.
Data Assimilation in Meteorology and Oceanography Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles Joint work with.
GEM Workshop June 24, 2003 Data Assimilation Workshop Notes Why and What is Data Assimilation? What Data Assimilation is not Key Challenges in Data Assimilation.
Dynamical Systems, Sequential Estimation, and Estimating Parameters Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles.
A Variational Carbon Data Assimilation System (CDAS-4DVar)
A Concept of Environmental Forecasting and Variational Organization of Modeling Technology Vladimir Penenko Institute of Computational Mathematics and.
Advanced data assimilation methods with evolving forecast error covariance Four-dimensional variational analysis (4D-Var) Shu-Chih Yang (with EK)
Advanced data assimilation methods- EKF and EnKF Hong Li and Eugenia Kalnay University of Maryland July 2006.
Experimenting with the LETKF in a dispersion model coupled with the Lorenz 96 model Author: Félix Carrasco, PhD Student at University of Buenos Aires,
UNBIASED ESTIAMTION OF ANALYSIS AND FORECAST ERROR VARIANCES
UCLA-LANL Reanalysis Project Yuri Shprits 1 Collaborators: Binbin Ni 1, Dmitri Kondrashov 1, Yue Chen 2, Josef Koller 2,
Introduction to Numerical Weather Prediction and Ensemble Weather Forecasting Tom Hamill NOAA-CIRES Climate Diagnostics Center Boulder, Colorado USA.
A comparison of hybrid ensemble transform Kalman filter(ETKF)-3DVAR and ensemble square root filter (EnSRF) analysis schemes Xuguang Wang NOAA/ESRL/PSD,
Statistical Methods for long-range forecast By Syunji Takahashi Climate Prediction Division JMA.
Francesca Marcucci, Lucio Torrisi with the contribution of Valeria Montesarchio, ISMAR-CNR CNMCA, National Meteorological Center,Italy First experiments.
Kalman filtering techniques for parameter estimation Jared Barber Department of Mathematics, University of Pittsburgh Work with Ivan Yotov and Mark Tronzo.
Ensemble Data Assimilation and Uncertainty Quantification Jeffrey Anderson, Alicia Karspeck, Tim Hoar, Nancy Collins, Kevin Raeder, Steve Yeager National.
Nonlinear Data Assimilation and Particle Filters
Computing a posteriori covariance in variational DA I.Gejadze, F.-X. Le Dimet, V.Shutyaev.
1 ESTIMATING THE STATE OF LARGE SPATIOTEMPORALLY CHAOTIC SYSTEMS: WEATHER FORECASTING, ETC. Edward Ott University of Maryland Main Reference: E. OTT, B.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High-resolution data assimilation in COSMO: Status and.
Ocean Data Variational Assimilation with OPA: Ongoing developments with OPAVAR and implementation plan for NEMOVAR Sophie RICCI, Anthony Weaver, Nicolas.
I Reanalysis of the Radiation Belt Fluxes Using CRRES and Akebono Satellites. II What can we Learn From Reanalysis. Yuri Shprits 1, Binbin Ni 1, Yue Chen.
Munehiko Yamaguchi 1 1. Rosenstiel School of Marine and Atmospheric Science, University of Miami MPO672 ENSO Dynamics, Prediction and Predictability by.
Assimilation of HF Radar Data into Coastal Wave Models NERC-funded PhD work also supervised by Clive W Anderson (University of Sheffield) Judith Wolf (Proudman.
The General Data Assimilation Problem Ronald Errico Goddard Earth Sciences Technology and Research Center at Morgan State University and Global Modeling.
Dusanka Zupanski And Scott Denning Colorado State University Fort Collins, CO CMDL Workshop on Modeling and Data Analysis of Atmospheric CO.
2004 SIAM Annual Meeting Minisymposium on Data Assimilation and Predictability for Atmospheric and Oceanographic Modeling July 15, 2004, Portland, Oregon.
Applications of optimal control and EnKF to Flow Simulation and Modeling Florida State University, February, 2005, Tallahassee, Florida The Maximum.
Assimilating chemical compound with a regional chemical model Chu-Chun Chang 1, Shu-Chih Yang 1, Mao-Chang Liang 2, ShuWei Hsu 1, Yu-Heng Tseng 3 and Ji-Sung.
MODEL ERROR ESTIMATION EMPLOYING DATA ASSIMILATION METHODOLOGIES Dusanka Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University.
Research Vignette: The TransCom3 Time-Dependent Global CO 2 Flux Inversion … and More David F. Baker NCAR 12 July 2007 David F. Baker NCAR 12 July 2007.
Data Assimilation for the Space Environment Ludger Scherliess Center for Atmospheric and Space Sciences Utah State University Logan, Utah GEM.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
Data Assimilation With VERB Code
Quality of model and Error Analysis in Variational Data Assimilation François-Xavier LE DIMET Victor SHUTYAEV Université Joseph Fourier+INRIA Projet IDOPT,
NCAF Manchester July 2000 Graham Hesketh Information Engineering Group Rolls-Royce Strategic Research Centre.
Developments of a dynamically consistent targeting and assimilation method Alberto Carrassi (°), Anna Trevisan (*) and Francesco Uboldi (§) (°) Dept. of.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
Hydrologic Data Assimilation with a Representer-Based Variational Algorithm Dennis McLaughlin, Parsons Lab., Civil & Environmental Engineering, MIT Dara.
Page 1 Andrew Lorenc WOAP 2006 © Crown copyright 2006 Andrew Lorenc Head of Data Assimilation & Ensembles Numerical Weather Prediction Met Office, UK Data.
1 A multi-scale three-dimensional variational data assimilation scheme Zhijin Li,, Yi Chao (JPL) James C. McWilliams (UCLA), Kayo Ide (UMD) The 8th International.
Targetting and Assimilation: a dynamically consistent approach Anna Trevisan (*), Alberto Carrassi (°) and Francesco Uboldi (§) (*) ISAC-CNR Bologna,
A Random Subgrouping Scheme for Ensemble Kalman Filters Yun Liu Dept. of Atmospheric and Oceanic Science, University of Maryland Atmospheric and oceanic.
Geogg124: Data assimilation P. Lewis. What is Data Assimilation? Optimal merging of models and data Models Expression of current understanding about process.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
Carbon Cycle Data Assimilation with a Variational Approach (“4-D Var”) David Baker CGD/TSS with Scott Doney, Dave Schimel, Britt Stephens, and Roger Dargaville.
Jeffrey Anderson, NCAR Data Assimilation Research Section
Gleb Panteleev (IARC) Max Yaremchuk, (NRL), Dmitri Nechaev (USM)
Observing Climate Variability and Change
Accelerating Local Ensemble Tangent Linear Models with order reduction Craig H. Bishop The University of Melbourne, Parkville, Australia Joanna.
FSOI adapted for used with 4D-EnVar
2. University of Northern British Columbia, Prince George, Canada
Sarah Dance DARC/University of Reading
Michael Ghil Ecole Normale Supérieure, Paris, et
Presentation transcript:

Colloque national – Assimilation des données : Conclusions générales et perspectives Michael Ghil Ecole Normale Supérieure, Paris, et University of California, Los Angeles La partie “personnelle” des Perspectives est en collaboration avec Dmitri Kondrashov de UCLA et bcp. d’autres ; prière de voir

Outline Data in meteorology and oceanography - in situ & remotely sensed Basic ideas, data types, & issues -how to combine data with models -stability of the fcst.–assimilation cycle -filters & smoothers Parameter estimation - model parameters - noise parameters – at & below grid scale Subgrid-scale parameterizations - deterministic (“classic”) - stochastic – “dynamics” & “physics” Novel areas of application - space physics - shock waves in solids - macroeconomics Concluding remarks

Main issues The solid earth stays put to be observed, the atmosphere, the oceans, & many other things, do not. Two types of information: - direct  observations, and - indirect  dynamics (from past observations); both have errors. Combine the two in (an) optimal way(s) Advanced data assimilation methods provide such ways: - sequential estimation  the Kalman filter(s), and - control theory  the adjoint method(s) The two types of methods are essentially equivalent for simple linear systems (the duality principle)

Main issues (continued) Their performance differs for large nonlinear systems in: - accuracy, and - computational efficiency Study optimal combination(s), as well as improvements over currently operational methods (OI, 4-D Var, PSAS).

Programme du Colloque Mardi 9 mai 10h00-10h45 - A. Tarantola : Formulation probabiliste des problèmes inverses 10h45-11h15 - Pause café 11h15-11h45 - F.-X. Le Dimet : Quelques problèmes mathématiques en assimilation de données 11h45-12h15 - J. Pailleux : L'assimilation de données en météorologie pour la prévision du temps 12h15-12h45 - P. De Mey : L'assimilation de données en océanographie dynamique 12h45-14h00 - Pause repas 14h00-14h30 - H. Elbern : Assimilation de données chimiques dans la troposphère 14h30-15h00 - V.-H. Peuch : Applications en chimie atmosphérique 15h00-15h30 - D. Dartus : Potentiel des méthodes variationnelles pour la modélisation hydrologique 15h30-16h00 - P. Brasseur : Assimilation de données pour la modélisation couplée physico-biogéochimique de l'océan 16h00-16h30 - F. Parrenin : Conjonction de modèles et données pour l'étude des calottes polaires 16h30-17h30 - Pause café et Session Posters

Programme du Colloque (2e jour) Mercredi 10 mai 09h00-09h30 - L. Hascoët : Capacités actuelles de la différentiation automatique : l'adjoint d'OPA 9.0 par TAPENADE 09h30-10h00 - S. Gratton : Méthodes d'optimisation pour l'assimilation de données variationnelle 10h00-10h30 - T. Morel : PALM, un coupleur dynamique pour l'assimilation de données 10h30-11h30 - Pause café et Session Posters 11h30-12h00 - O. Talagrand : Diagnostic des systèmes d'assimilation 12h00-13h30 - Pause repas 13h30-14h30 - Discussion 14h30-15h15 - M. Ghil : Conclusions générales et perspectives 15h15 - Fin du colloque

Outline  Data in meteorology and oceanography - in situ & remotely sensed Basic ideas, data types, & issues -how to combine data with models -filters & smoothers - stability of the fcst.-assimilation cycle Parameter estimation - model parameters - noise parameters – at & below grid scale Subgrid-scale parameterizations - deterministic (“classic”) - stochastic – “dynamics” & “physics” Novel areas of application - space physics - shock waves in solids - macroeconomics Concluding remarks

Atmospheric data Total no. of observations = 0(10 5 ) scalars per 12h–24h  0(10 2 ) observations/[(significant d-o-f) x (significant  t)] Bengtsson, Ghil & Källén (eds.): Dynamic Meteorology, Data Assimilation Methods (1981) Drifting buoys: P s – 267 Cloud-drift: V – 2x2259 Aircraft: V – 2x1100 Ship & land surface: P s, T s, V s – 4x3446 Polar orbiting satellites: T – 5x2048 Balloons : V – 2x581x10 Radiosondes : T, V - 3x749x10

Observational network Quality control – preliminary & as part of the assimilation cycle

Ocean data – past Total no. of oceanographic observations/met. ob’sns = O(10 –4 ) for the past; & = O(10 –1 ) for the future : Syd Levitus (1982).

Ocean data – present & future Altimetry  sea level; scatterometry  surface winds & sea state; acoustic tomography  temperature & density; etc. Courtesy of Tony Lee, JPL

Space physics data Space platforms in Earth’s magnetosphere

Evolution of DA – I Transition from “early” to “mature” phase of DA in NWP: –no Kalman filter  Ghil et al., 1981(*) –no adjoint  Lewis & Derber (Tellus, 1985); Le Dimet & Talagrand (Tellus, 1986) (*) Bengtsson, Ghil & Källén (Eds., 1981), Dynamic Meteorology: Data Assimilation Methods. M. Ghil & P. M.-Rizzoli (Adv. Geophys., 1991).

Evolution of DA – II Cautionary note: “Pantheistic” view of DA: variational ~ KF; 3- & 4-D Var ~ 3- & 4-D PSAS. Fashionable to claim it’s all the same but it’s not: God is in everything, but the devil is in the details. M. Ghil & P. M.-Rizzoli (1991, Adv. Geophys.)

Outline Data in meteorology and oceanography - in situ & remotely sensed  Basic ideas, data types, & issues -how to combine data with models -stability of the fcst.–assimilation cycle -filters & smoothers Parameter estimation - model parameters - noise parameters – at & below grid scale Subgrid-scale parameterizations - deterministic (“classic”) - stochastic – “dynamics” & “physics” Novel areas of application - space physics - shock waves in solids - macroeconomics Concluding remarks

Error components in forecast–analysis cycle The relative contributions to error growth of analysis error intrinsic error growth modeling error (stochastic?)

Assimilation of observations: Stability considerations forecast state; model integration from a previous analysis Corresponding perturbative (tangent linear) equation If observations are available and we assimilate them: Evolutive equation of the system, subject to forcing by the assimilated data Corresponding perturbative (tangent linear) equation, if the same observations are assimilated in the perturbed trajectories as in the control solution  The matrix (I – KH) is expected, in general, to have a stabilizing effect;  the free-system instabilities, which dominate the forecast step error growth, can be reduced during the analysis step. Joint work with A. Carrassi, A. Trevisan & F. Uboldi Free-System Dynamics (sequential-discrete formulation): Standard breeding Observationally Forced System Dynamics (sequential-discrete formulation): BDAS

Stabilization of the forecast–assimilation system – I Assimilation experiment with a low-order chaotic model  Periodic 40-variable Lorenz (1996) model;  Assimilation algorithms: replacement (Trevisan and Uboldi, 2004), replacement + one adaptive obs’n located by multiple replication (Lorenz, 1996), replacement + one adaptive obs’n located by BDAS and assimilated by AUS (Trevisan & Uboldi, JAS, 2004). Trevisan & Uboldi (JAS, 2004)

Stabilization of the forecast–assimilation system – II Observational forcing  Unstable subspace reduction  Free System Leading exponent: max ≈ 0.31 days –1 ; Doubling time ≈ 2.2 days; Number of positive exponents: N + = 24; Kaplan-Yorke dimension ≈  3-DVar–BDAS Leading exponent: max ≈ 6x10 –3 days –1 ;  AUS–BDAS Leading exponent: max ≈ – 0.52x10 –3 days –1 Assimilation experiment with an intermediate atmospheric circulation model  64-longitudinal x 32-latitudinal x 5 levels periodic channel QG-model (Rotunno & Bao, 1996)  Perfect-model assumption  Assimilation algorithms: 3-DVar (Morss, 2001); AUS (Uboldi et al., 2005; Carrassi et al., 2006)

Outline Data in meteorology and oceanography - in situ & remotely sensed  Basic ideas, data types, & issues -how to combine data with models -stability of the fcst.–assimilation cycle -filters & smoothers Parameter estimation - model parameters - noise parameters – at & below grid scale Subgrid-scale parameterizations - deterministic (“classic”) - stochastic – “dynamics” & “physics” Novel areas of application - space physics - shock waves in solids - macroeconomics Concluding remarks

The main products of estimation (*) Filtering (F) – “video loops” Smoothing (S) – full-length feature “movies” Prediction (P) – NWP, ENSO Distribute all of this over the Web to scientists, and the “person in the street” (or on the information superhighway). In a general way: Have fun!!! (*) N. Wiener (1949, MIT Press)

Kalman filter

Kalman smoother For a fixed interval, weak constrained 4-D Var is equivalent to the sequential (“Kalman”) smoother. Cohn, Sivakumaran & Todling (MWR, 1994)

Smoothing vs. Filtering: The Backward Sequential Smoother (BSS) A “smoother” is smoother than a filter. But which smoother is - smoothest - cheapest - easiest to implement? Joint work with T. M. Chin, J. B. Jewell, & M. J. Turmom, JPL

EnKF, RPF, MCMC and the BSS The BSS retrospectively updates a set of weights for ensemble members. It can work with either EnKF- or RPF- generated ensembles; is relatively inexpensive; and works well for highly nonlinear, illustrative examples: - the double-well potential, & - the Lorenz (1963) model.

BSS Performance for the Lorenz (1963) System Data: x 1 and x 3, every  t = 0.5 Upper panel: RPF vs. smoother Smoother follows ob’ns (  ) better in x 1 and is more realistic in x 2. Lower panel: RPF vs. EnKF, & filter (- - -) vs. smoother (----) Smoother better than filter, & EnKF better than RPF for very small ensemble size N, but RPF takes over as N increases.

Outline Data in meteorology and oceanography - in situ & remotely sensed Basic ideas, data types, & issues -how to combine data with models -filters & smoothers - stability of the fcst.-assimilation cycle  Parameter estimation - model parameters - noise parameters – at & below grid scale Subgrid-scale parameterizations - deterministic (“classic”) - stochastic – “dynamics” & “physics” Novel areas of application - space physics - shock waves in solids - macroeconomics Concluding remarks

Parameter Estimation a) Dynamical model dx/dt = M(x,  ) +  (t) y o = H(x) +  (t) Simple (EKF) idea – augmented state vector d  /dt = 0, X = (x T,  T ) T b) Statistical model L(  )  = w(t),L – AR(MA) model,  = (  1,  2, ….  M ) Examples: 1) Dee et al. (IEEE, 1985) – estimate a few parameters in the covariance matrix Q = E( ,  T ); also the bias = E  ; 2) POPs - Hasselmann (1982, Tellus); Penland (1989, MWR; 1996, Physica D); Penland & Ghil (1993, MWR) 3) dx/dt = M(x,  ) +  : Estimate both M & Q from data (Dee, 1995, QJ), Nonlinear approach: Empirical mode reduction (Kravtsov et al., 2005, Kondrashov et al., 2005)

Estimating noise – I Q 1 = Q slow, Q 2 = Q fast, Q 3 =0; R 1 = 0, R 2 = 0, R 3 =R; Q = ∑  i Q i ; R = ∑  i R i ;  (0) = (6.0, 4.0, 4.5) T ; Q(0) = 25*I. Dee et al. (1985, IEEE Trans. Autom. Control, AC-30) 11 22 33 estimated true (  =1) Poor convergence for Q fast ?

Estimating noise – II Same choice of  (0), Q i, and R i but    (0) = 25 *     Dee et al. (1985, IEEE Trans. Autom. Control, AC-30) estimated true (  = 1) Good convergence for Q fast ! 11 22 33

Sequential parameter estimation “State augmentation” method – uncertain parameters are treated as additional state variables. Example: one unknown parameter  The parameters are not directly observable, but the cross-covariances drive parameter changes from innovations of the state: Parameter estimation is always a nonlinear problem, even if the model is linear in terms of the model state: use Extended Kalman Filter (EKF).

Parameter estimation for coupled O-A system Intermediate coupled model (ICM: Jin & Neelin, JAS, 1993) Estimate the state vector W = (T’, h, u, v), along with the coupling parameter  and surface-layer coefficient  s by assimilating data from a single meridional section. The ICM model has errors in its initial state, in the wind stress forcing & in the parameters. M. Ghil (1997, JMSJ); Hao & Ghil (1995, Proc. WMO Symp. DA Tokyo); Sun et al. (2002, MWR). Current work with D. Kondrashov, J.D. Neelin, & C.-j. Sun. Forecast using wrong  Reference solution Assimilation result Forecast using wrong  and  s Reference solution Assimilation result

Convergence of parameter value Reference value:  = 0.76; Initial model (“wrong”) value:  = 0.6

Outline Data in meteorology and oceanography - in situ & remotely sensed Basic ideas, data types, & issues -how to combine data with models -stability of the fcst.–assimilation cycle -filters & smoothers Parameter estimation - model parameters - noise parameters – at & below grid scale Subgrid-scale parameterizations - deterministic (“classic”) - stochastic – “dynamics” & “physics”  Novel areas of application - space physics - shock waves in solids - macroeconomics Concluding remarks

Parameter Estimation for Space Physics – I Daily fluxes of 1MeV relativistic electrons in Earth’s outer radiation belt (CRRES observations from 28 August 1990) K p - index of solar activity (external forcing) Joint work with D. Kondrashov, Y. Shprits, & R. Thorne, UCLA; R. Friedel & G. Reeves, LANL

Parameter estimation for space physics – II HERRB-1D code (Y. Shprits) – estimating phase space density f and electron lifetime  L : Different lifetime parameterizations for plasmasphere – out/in:  Lo =  /K p (t);  Li =const. What are the optimal lifetimes to match the observations best?

Parameter estimation for space physics – III Daily observations from the “truth” —  Lo =  /K p,  = 3, and  LI = 20 — are used to correct the model’s “wrong” parameters,  = 10 and  LI = 10. The estimated error tr(P f ) ≈ actual When the parameters’ assumed uncertainty is large enough, their EKF estimates converge rapidly to the “truth”.

Outline Data in meteorology and oceanography - in situ & remotely sensed Basic ideas, data types, & issues -how to combine data with models -stability of the fcst.–assimilation cycle -filters & smoothers Parameter estimation - model parameters - noise parameters – at & below grid scale Subgrid-scale parameterizations - deterministic (“classic”) - stochastic – “dynamics” & “physics”  Novel areas of application - space physics - shock waves in solids - macroeconomics Concluding remarks

The NEDyM model –represents a closed economy with one producer; one consumer; one type of goods; –reproduces economic growth and business cycles; –dynamical system with 12 state variables; and –15 parameters The data –U.S. macroeconomic data for nearly 60 years, 1947–2004; –data from the National Bureau of Economic Research (NBER; –5 variables: production, consumption, investment, wages, and inflation. First experiments –Calibration of the model trend only (no business cycle yet) –“Only” 8 parameters Kalman filtering in a macroeconomic model Joint work with P. Dumas (*), S. Hallegatte, & J.-Ch. Hourcade, CIRED (*) also Environmental Research and Teaching Institute (ERTI), ENS

Calibration of a macroeconomic model using a Kalman filter Model variables: production; consumption; investment

State estimation Model variables – employment rate

Parameter estimation Model parameters – interest rate

Parameter estimation Model parameters – annual rate of productivity growth

Computational advances a) Hardware - more computing power (CPU throughput) - larger & faster memory (3-tier) b) Software - better algorithms - automatic adjoints - block-banded algorithms - efficient parallelization, …. How much DA vs. forecast? - Design integrated observing–forecast–assimilation systems!

Observing system design  Need no more (independent) observations than d-o-f to be tracked: - “features” (Ide & Ghil, 1997a, b, DAO); - instabilities (Todling & Ghil, Ghil & Todling, 1996, MWR); - trade-off between mass & velocity field (Jiang & Ghil, JPO, 1993).  The cost of advanced DA is much less than that of instruments & platforms: - at best use DA instead of instruments & platforms. - at worst use DA to determine which instruments & platforms (advanced OSSE)  Use any observations, if forward modeling is possible (observing operator H) - satellite images, 4-D observations; - pattern recognition in observations and in phase-space statistics.

The DA Maturity Index of a Field (Satellite) images  (weather) forecasts, climate “movies” … The theoretician: Science is truth, don’t bother me with the facts! The observer/experimentalist: Don’t ruin my beautiful data with your lousy model!! Pre-DA: few data, poor models Early DA: Better data, so-so models. Stick it (the obs’ns) in – direct insertion, nudging. Advanced DA: Plenty of data, fine models. EKF, 4-D Var (2 nd duality). Post-industrial DA:

Conclusion No observing system without data assimilation and no assimilation without dynamics a Quote of the day: “You cannot step into the same river b twice c ” (Heracleitus, Trans. Basil. Phil. Soc. Miletus, cca. 500 B.C.) a of state and errors b Meandros c “You cannot do so even once” (subsequent development of “flux” theory by Plato, cca. 400 B.C.)    = Everything flows

General references Bengtsson, L., M. Ghil and E. Källén (Eds.), Dynamic Meteorology: Data Assimilation Methods, Springer-Verlag, 330 pp. Daley, R., Atmospheric Data Analysis. Cambridge Univ. Press, Cambridge, U.K., 460 pp. Ghil, M., and P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141–266. Bennett, A. F., Inverse Methods in Physical Oceanography. Cambridge Univ. Press, 346 pp. Malanotte-Rizzoli, P. (Ed.), Modern Approaches to Data Assimilation in Ocean Modeling. Elsevier, Amsterdam, 455 pp. Wunsch, C., The Ocean Circulation Inverse Problem. Cambridge Univ. Press, 442 pp. Ghil, M., K. Ide, A. F. Bennett, P. Courtier, M. Kimoto, and N. Sato (Eds.), Data Assimilation in Meteorology and Oceanography: Theory and Practice, Meteorological Society of Japan and Universal Academy Press, Tokyo, 496 pp.