Thermodynamics of Separation Operations

Slides:



Advertisements
Similar presentations
SELECTING THERMODYNAMIC PROPERTY METHODS
Advertisements

Equipment Design and Costs for Separating Homogeneous Mixtures.
Properties of Matter 2.1 Matter has observable properties. 2.2
Aspen Tutorial Terry A. Ring ChEN 4253.
CHEN 4460 – Process Synthesis, Simulation and Optimization Dr. Mario Richard Eden Department of Chemical Engineering Auburn University Lab Lecture No.
Thermodynamic Property Methods
Property Methods In Aspen Plus
Advanced Thermodynamics Note 11 Solution Thermodynamics: Applications
Chapter10 Equilibrium-Based Methods for Multicomponent Absorption, Stripping, Distillation, and Extraction.
Properties of Reservoir Fluids Fugacity and Equilibrium Fall 2010 Shahab Gerami 1.
Vapor and Liquid Equilibrium
CHEN 4460 – Process Synthesis, Simulation and Optimization Dr. Mario Richard Eden Department of Chemical Engineering Auburn University Lecture No. 4 –
DISTILLATION.
Multistage Distillation
Distillation and Alcohol Production Application
Absorption and Stripping of Dilute Mixtures
Dr Saad Al-ShahraniChE 334: Separation Processes Absorption and Stripping of Dilute Mixtures  In absorption (also called gas absorption, gas scrubbing,
03 Nov 2011Prof. R. Shanthini1 Course content of Mass transfer section LTA Diffusion Theory of interface mass transfer Mass transfer coefficients, overall.
Chem. Eng. Thermodynamics (TKK-2137) 14/15 Semester 3 Instructor: Rama Oktavian Office Hr.: M.13-15, Tu , W ,
Chemstations, Inc – Houston, TX – – An Overview of Process Simulation What is needed? What are the steps?
Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure.
CHEN 4470 – Process Design Practice Dr. Mario Richard Eden Department of Chemical Engineering Auburn University Lecture No. 3 – Overview of Mass Exchange.
Chemical and Engineering Thermodynamics
1 Applied Thermodynamics 應用熱力學 Chapter 0 課程資訊 學年度第 2 學期行事曆 應用熱力學:三 (8,9) ,四 (2) 三教 308 Chapter 1 Introduction 三教 308.
School of Electrical Engineering Systems
CHEN 4460 – Process Synthesis, Simulation and Optimization Dr. Mario Richard Eden Department of Chemical Engineering Auburn University Lecture No. 4 –
Chemical Engineering Thermodynamics (TKK-2137) 14/15 Semester 3 Instructor: Rama Oktavian Office Hr.: M.13-15, T ,
Dicky Dermawan ITK-234 Termodinamika Teknik Kimia II Nonideal Behavior Dicky Dermawan
ADVANCED MASS TRANSFER
LPPD Jamie Polan, LPPD ◦ Chicago, Illinois ◦ REU, Summer 2006 Separation Systems Design Under Uncertainty Final Presentation for REU program August 3,
Chemical Thermodynamics II Phase Equilibria
Dr Saad Al-ShahraniChE 334: Separation Processes  Nonideal Liquid Solutions  If a molecule contains a hydrogen atom attached to a donor atom (O, N, F,
Chapter 11(a) Properties of Solutions. Copyright © Houghton Mifflin Company. All rights reserved.11a–2.
Dr Saad Al-ShahraniChE 334: Separation Processes Absorption of Dilute Mixtures  Graphical Equilibrium Stage Method for Trayed Tower  Consider the countercurrent-flow,
Distillation ... A Separation Method.
(Heat and Mass Transfer) Lecture 22: Distillation and Mass Transfer
Introduction to Separation
ABSORPTION.
THERMODYNAMICS OF SEPARATION OPERATIONS
The Simplest Phase Equilibrium Examples and Some Simple Estimating Rules Chapter 3.
Abstract: There must be Different techniques in order to determine physical and thermodynamically properties of hydrocarbon products. However, in most.
Eric Carlson’s Recommendations
Chem. Eng. Thermodynamics (TKK-2137) 14/15 Semester 3 Instructor: Rama Oktavian Office Hr.: M.13-15, Tu , W ,
Chemical Engineering Thermodynamics II Perla B. Balbuena 240 JEB
Validity of Ideal Gas EOS Using generalized correlations for gasses Jordan Orsak Lance Brockway Bryan Hinson Philip Brown.
 In the previous section you specified the stream conditions in the Workbook property view. Next you will input the composition information in the Stream.
SOLUTION THERMODYNAMICS:
Approximate Methods for Multicomponent, Multistage Separations
Mass Transfer 2 Section # 1.
Solution Thermodynamics: Applications Chapter 12-Part IV.
Students: Amiran Divekar ( ) Ameedhara Hingrajiya ( ) Priyal Parikh ( ) Sal College of engineering Department of Chemical.
Concept of HETP, HTU and NTU
Energy Balance 1. Concerned with energy changes and energy flow in a chemical process. Conservation of energy – first law of thermodynamics i.e. accumulation.
Aspen Tutorial Terry A. Ring ChEN 4253.
Process Design Course Using the NIST, DIPPR and DDBSP databases for Finding Physical, Chemical and Thermodynamic Properties Process Design Course.
Thermodynamic models in aspen hysys
Solution of Thermodynamics: Theory and applications
A Review of Separation Topics
Phase Equilibrium.
How to chose the best property prediction method for simulation ?
How to chose the best property prediction method for simulation ?
Chem. Eng. Thermodynamics (TKK-2137)
How to chose the best property prediction method for simulation ?
Chemical Engineering Thermodynamics (CHPE208) – Chapter 0
How to chose the best property prediction method for simulation ?
Thermodynamics Review and Theory
How to chose the best property prediction method for simulation ?
MASS TRANSFER II DISTILLATION.
How to chose the best property prediction method for simulation ?
How to chose the best property prediction method for simulation ?
Presentation transcript:

Thermodynamics of Separation Operations Chapter2 Thermodynamics of Separation Operations

Key and Difficult Points: Purpose and Requirements: Know the importance and mechanism of separation Learn to select feasible separation process Key and Difficult Points: Key Points Phase Equilibria: Fugacities and activity Coefficients Graphical Correlations of Thermodynamic Properties Calculation of K-value Difficult Points Nonidea Thermodynamic Property Modes Activity Coefficient Models for the Liquid Phase

Outline 2.1 ENERGY, ENTROPY, AND AVAILABILITY -BALANCES 2.2 PHASE EQUILIBRIA 2.3 IDEAL GAS, IDEAL LIQUID SOLUTION MODEL 2.4 GRAPHICAL CORRELATIONS OF THERMODYNAMIC PROPERTIES 2.5 NONIDEAL THERMODYNAMIC PROPERTY MODELS 2.6 Activity Coefficient Models for the Liquid Phase

2.1ENERGY, ENTROPY, AND AVAILABILITY -BALANCES Gas Mixture (Solutes or Absorbate) Liquid (Solvent or Absorbent) Separate Gas Mixtures Remove Impurities, Contaminants, Pollutants, or Catalyst Poisons from a Gas(H2S/Natural Gas) Recover Valuable Chemicals

2.2 PHASE EQUILIBRIA A = L/KV Component A = L/KV K-value Water 1.7 0.031 Acetone 1.38 2.0 Oxygen 0.00006 45,000 Nitrogen 0.00003 90,000 Argon 0.00008 35,000 Larger the value of A,Fewer the number of stages required 1.25 to 2.0 ,1.4 being a frequently recommended value

2.3 IDEAL GAS, IDEAL LIQUID SOLUTION MODEL Stripping Distillation Stripping Factor (S解吸因子) S = 1/ A= KV/L High temperature Low pressure is desirable Optimum stripping factor :1.4.

6.1 EQUIPMENT trayed tower packed column bubble column spray tower centrifugal contactor Figure 6.2 Industrial Equipment for Absorption and Stripping

Trayed Tower (Plate Clolumns板式塔) Figure 6.3 Details of a contacting tray in a trayed tower

(d) Tray with valve caps (a) perforation (b) valve cap (c) bubble cap (d) Tray with valve caps Figure 6.4 Three types of tray openings for passage of vapor up into liquid

Froth (a) Spray(b) Froth(c) Emulsion(d) Bubble(e)Cellular Foam Liquid carries no vapor bubbles to the tray below Vapor carries no liquid droplets to the tray above No weeping of liquid through the openings of the tray Equilibrium between the exiting vapor and liquid phases is approached on each tray. (a) Spray(b) Froth(c) Emulsion(d) Bubble(e)Cellular Foam Figure 6.5 Possible vapor-liquid flow regimes for a contacting tray

Packed Columns Figure 6.6 Details of internals used in a packed column

Packing Materails (a) Random Packing Materials (b) Structured Packing More surface area for mass transfer Higher flow capacity Lower pressure drop Packing Materails (a) Random Packing Materials (b) Structured Packing Materials Expensive Far less pressure drop Higher efficiency and capacity Figure 6.7 Typical materials used in a packed column

SUMMARY 1. Separation processes are often energy-intensive. Energy requirements are determined by applying the first law of thermodynamics. Estimates of minimum energy needs can be made by applying the second law of thermodynamics with an entropy balance or an availability balance. 2. Phase equilibrium is expressed in terms of vapor-liquid and liquid-liquid AT-values, which are formulated in terms of fugacity and activity coefficients. 3. For separation systems involving an ideal gas mixture and an ideal liquid solution, all necessary thermodynamic properties can be estimated from just the ideal gas law, a vapor heat capacity equation, a vapor pressure equation, and an equation for the liquid density as a function of temperature.

4. Graphical correlations of pure-component thermodynamic properties are widely avail­able and useful for making rapid, manual calculations at near-ambient pressure for an ideal solution. 5. For nonideal vapor and liquid mixtures containing nonpolar components, certain P-u-7'equation-of-state models such as S-R-K, P-R, and L-K-P can be used to estimate density, enthalpy, entropy, fugacity coefficients, and k-values. 6. For nonideal liquid solutions containing nonpolar and/or polar components, certain free-energy models such as Margules, van Laar, Wilson, NRTL, UNIQUAC, and UNIFAC can be used to estimate activity coefficients, volume and enthalpy of mixing, excess entropy of mixing, and k-values.

REFERENCES 1. Mix, T.W., J.S. Pweck, M. Weinhcrg, and R.C. Armstrong, AlChESymp. Ser., No. 192, Vol. 76, 15-23 (1980). 2. Pettier, R.M., and R.W. Rousseau, Elementary Principles of Chemical Prucr.v.vt'v. 2nd ed.. John Wiley <& Sons, New York (1986). 3. de Nevers, N., and J.D. Seader, Latin Am. J. Heat and Mass Transfer, 8, 77-105 (1984). 4. I'rausnitz, J.M., R.N. Lichtenthaler, and E.G. de A/evedo, Mo­lecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed., Pren­tice-Hall. Englewood Cliffs. NJ. pp. 18-20 (1986). 5. Starling, K.L., Huid Thermodynamic Properties for Light Petro­leum Systems, Gulf Publishing, Houston. TX (1973). 6 Soavo, G., Chem. eur. Sci., 27, 1197-1203 (1972). 7. Peng D.Y., and D.B. Robinson, Iinl. Eng. Chem. FunJuin., 15,59-64(1976)

16. Robbins, L. A. , Section 15, "Liquid-Liquid Extraction. " in R. H 16. Robbins, L.A., Section 15, "Liquid-Liquid Extraction." in R.H. Perry, D. Green, and J.O. Maloney, Eds., Perry's Chemical Engi­neers Handbook, 6th ed., McGraw-Hill, New York (1984). 17. pitzer, K.S., D.Z. Lippman, R.F. Cur!, Jr., C.M Muggins, and D.E. Petersen, /. Am. Chem. Soc., 77, 3433-3440 (1955). 18. Redlich, O., and J.N.S. Kwong, Chem. Rev., 44, 233-244 (1949). 19. Shah, K.K., and G. Thodos, Ind. Eng. Chem., 57 (3), 30-37(1965). 20. Glanville, J.W., B.H. Sage, and W.N. Lacey, Ind. Eng. Chem.,42,508-513 (1950). 21. Wilson, G.M., Adv. Cryogenic Eng., 11, 392-400 (1966). 22. Knapp, H., R. Doring, L. Oellrich, U. Plocker, and J.M. Praus-nitz, Vapor-Liquid Equilbria for Mixtures of Low Boiling Sub­stances, Chem. Data. Ser., Vol. VI, DECHEMA (1982). 23. Thiesen, M., Ann. Phys., 24, 467-492 (1885). 24. Onnes, K., Konink. Akad. Wetens, p. 633 (1912). 25. Walas, S.M., Phase Equilbria in Chemical Engineering, Butler-worth, Boston (1985).

8. Plocker,U. , H. Knapp, and J. M. I'rausnit/. , hid. Eng 8. Plocker,U., H. Knapp, and J.M. I'rausnit/., hid. Eng. Chem Process Des .Dev., 17. 324-332 (1978). 9. Chao, K.C., and J.D. Seader, AlChE J., 7, 598-605 (1961). 10. Grayson, H.G., and C.W. Streed, Paper 20-P07, Sixth World Petroleum Conference, Frankfurt, June 1963. 11. Reid, R.C., J.M. Prausnitz, and B.E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1986). 12. Rackett, H.G., J. Chem. Eng. Data, 15, 514-517 (1970). 13. Yaws, C.L., H.-C. Yang, J.R. Hopper, and W.A. Cawley, Hydro­carbon Processing, 71 (1), 103-106 (1991). 14. Frank, J.C., G.R. Geyer, and H. Kehde, Chem. Eng. Prog., 65 (2), 79-86 (1969). 15. Hadden, ST., and H.G. Grayson, Hydrocarbon Process., Petrol. Refiner, 40 (9), 207-218 (1961).

26. Lee, B.I., and M.G. Kesslcr, AlChE J., 21, 510-527 (1975). 27. Edmister, W.C., Hydrocarbon Processing, 47 (9), 239-244 (1968), 28. Yarborough, L., 7. Chem. Eng. Data, 17, 129-133 (1972). 29. Prausnitz, J.M., W.C. Edmister, and K.C. Chao, AICHE J., 6, 214-219 (1960). 30. Hildebrand, J.H., J.M. Prausnitz, and R.L. Scott, Regular and Related Solutions, Van Nostrand Reinhold, New York (1970). 31. Yerazunis, S., J.D. Plowright, and P.M. Smola, AlChE J., 10,660-665 (1964). 32. Hermsen, R.W., and J.M. Prausnitz, Chem. Eng. ScL, 18, 485-494 (1963). 33. Ewell, R.H., J.M. Harrison, and L. Berg, Ind. Eng. Chem., 36,871-875 (1944).

34. Van Ness. H. C. , C. A. Soczek, and N. K. Kochar, J. Chem. Eng 34. Van Ness. H.C., C.A. Soczek, and N.K. Kochar, J. Chem. Eng. Data, 12,346-351 (1967). 35. Sinor, J.E., and J.H. Weber, /. Chem. Eng. Data, 5, 243-247(1960). 36. Orye, R.V., and J.M. Prausnitz. Ind. Eng. Chem., 57 (5),18-26(1965). 37. Wilson, G.M., J. Am. Chem. Soc., 86, 127-130 (1964). 38. Cukor, P.M., and J.M. Prausnitz, Inst. Chem. Eng. Symp. Ser. No. 32, 3,88 (1969). 39. Gmehling, J., and U. Onken, Vapor-Liquid Equilibrium Data Collection, DECHEMA Chem. Data Ser., U8, (1977-1984). 40. Hiranuma, M., J. Chem. Eng. Japan, 8, 162-163 (1957). 41. Rcnon, H.. and J.M. Prausnit/., AlCtif: ./., 14, 135-144 (|%«). 42. Renon. H., and J.M. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 8,413-419 (1969).

43. Abrams,D.S., and J.M. Prausnitz./l/CV;^./., 21,116-128(1975). 44. Abrams, D.S., Ph.D. thesis in chemical engineering. University of California, Berkeley. 1974. 45. Prausnitz, J.M., T.F. Anderson, E.A. Grens, C.A. Eckeit, R. Hsieh, and J.P. O'Connell, Computer Calculations for Multicompo-nent Vapor-Liquid and Liquid-Liquid Equilibria, Prentice-Hall, En-glewood Cliffs, NJ (1980). 46. Fredenslund, A., J. Gmehling, M.L. Michelsen. P. Rasmussen.and J.M. Prausnitz, I mi Eng. Chem. Process dcs. Dev., 16, 450-462 (1977). 47. Wilson, G.M., and C.H. Deal, Iml. Eng. Chem. Fnndum., 1,20-23(1962). 48. Derr, E.L.. and C.H. Deal, Inst. Chem. ehk- Symp. Ser. No. 32,3,40-51 (1969). 49. Fredenslund. A., R.L. Jones, and J.M. Prausnitz, AlChE.I., 21,1086-1099 (1975). 50. Fredenslund, A., J. Gmehling, and P. Rasmussen. Vapor-Liquid Equilibria Using UNIFAC, A Group Contribution Method. Elsevier, Amsterdam (1977).

51. Gmehling, J. , P. Rasmussen, and A. Fredenslund, Ind. Eng. Chem 51. Gmehling, J., P. Rasmussen, and A. Fredenslund, Ind. Eng. Chem. Process Des. Dev., 21, 118-127 (1982). 52. Macedo, E.A., U. Wcidlich, J. Gmehling, and P. Rasmussen. Ind. Eng. Chem. Process Des. Dev., 22, 676-678 (1983). 53. Tiegs, D., J. Gmehling, P. Rasmussen, and A. Fredenslund, Ind. Eng. Chem. Res., 26, 159-161 (1987). 54. Larsen, B.L., P. Rasmussen, and A. Fredenslund, Ind. Eng. Chem. Res., 26, 2274-2286 (1987). 55. Takeuchi, S., T. Nitta, and T. Kalayama, J. Chem. Eng. Japan, 8, 248-250 (1975). 56. Strubl, K., V. Svoboda, R. Holub, and J. Pick, Collect. Czech. Chem. Commun., 35, 3004-3019 (1970). 57. Riser, R.W., G.D. Johnson, and M.D. Shellar, J. Chem. Eng. Data, 6,338-341 (196!). 58. Magnussen, T., Ind. Eng. Chem. Process Des. Dev., 20, 331-339 (1981). 59. Jin,Z,.-L.,R.A. Greenkorn,and K.C. Chao, AlChE J., 41, 1602-1604 (1995).