G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 1 Lecture 4 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.

Slides:



Advertisements
Similar presentations
1 Statistical Methods in HEP, in particular... Nuisance parameters and systematic uncertainties Glen Cowan Royal Holloway, University of London
Advertisements

Using the Profile Likelihood in Searches for New Physics / PHYSTAT 2011 G. Cowan 1 Using the Profile Likelihood in Searches for New Physics arXiv:
27 th March CERN Higgs searches: CL s W. J. Murray RAL.
Bayesian inference “Very much lies in the posterior distribution” Bayesian definition of sufficiency: A statistic T (x 1, …, x n ) is sufficient for 
1 LIMITS Why limits? Methods for upper limits Desirable properties Dealing with systematics Feldman-Cousins Recommendations.
Chap 9: Testing Hypotheses & Assessing Goodness of Fit Section 9.1: INTRODUCTION In section 8.2, we fitted a Poisson dist’n to counts. This chapter will.
G. Cowan Statistics for HEP / LAL Orsay, 3-5 January 2012 / Lecture 2 1 Statistical Methods for Particle Physics Lecture 2: Tests based on likelihood ratios.
Statistics In HEP 2 Helge VossHadron Collider Physics Summer School June 8-17, 2011― Statistics in HEP 1 How do we understand/interpret our measurements.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem, random variables, pdfs 2Functions.
G. Cowan Statistics for HEP / NIKHEF, December 2011 / Lecture 3 1 Statistical Methods for Particle Physics Lecture 3: Limits for Poisson mean: Bayesian.
G. Cowan RHUL Physics Bayesian methods for HEP / DESY Terascale School page 1 Bayesian statistical methods for HEP Terascale Statistics School DESY, Hamburg.
1 Nuisance parameters and systematic uncertainties Glen Cowan Royal Holloway, University of London IoP Half.
G. Cowan Statistical methods for HEP / Freiburg June 2011 / Lecture 3 1 Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion.
Statistics for HEP / LAL Orsay, 3-5 January 2012 / Lecture 1
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
Hypothesis Tests for Means The context “Statistical significance” Hypothesis tests and confidence intervals The steps Hypothesis Test statistic Distribution.
G. Cowan 2011 CERN Summer Student Lectures on Statistics / Lecture 41 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability.
G. Cowan RHUL Physics Statistical Methods for Particle Physics / 2007 CERN-FNAL HCP School page 1 Statistical Methods for Particle Physics (2) CERN-FNAL.
Inference about a Mean Part II
G. Cowan Statistical Data Analysis / Stat 4 1 Statistical Data Analysis Stat 4: confidence intervals, limits, discovery London Postgraduate Lectures on.
G. Cowan Lectures on Statistical Data Analysis Lecture 14 page 1 Statistical Data Analysis: Lecture 14 1Probability, Bayes’ theorem 2Random variables and.
Inferences About Process Quality
G. Cowan Lectures on Statistical Data Analysis Lecture 13 page 1 Statistical Data Analysis: Lecture 13 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 10 page 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 7 1Probability, Bayes’ theorem, random variables, pdfs 2Functions of.
G. Cowan Discovery and limits / DESY, 4-7 October 2011 / Lecture 3 1 Statistical Methods for Discovery and Limits Lecture 3: Limits for Poisson mean: Bayesian.
Statistical Analysis of Systematic Errors and Small Signals Reinhard Schwienhorst University of Minnesota 10/26/99.
Chapter 8 Hypothesis testing 1. ▪Along with estimation, hypothesis testing is one of the major fields of statistical inference ▪In estimation, we: –don’t.
Graduierten-Kolleg RWTH Aachen February 2014 Glen Cowan
880.P20 Winter 2006 Richard Kass 1 Confidence Intervals and Upper Limits Confidence intervals (CI) are related to confidence limits (CL). To calculate.
Statistical Decision Theory
G. Cowan SUSSP65, St Andrews, August 2009 / Statistical Methods 2 page 1 Statistical Methods in Particle Physics Lecture 2: Limits and Discovery.
G. Cowan 2009 CERN Summer Student Lectures on Statistics1 Introduction to Statistics − Day 4 Lecture 1 Probability Random variables, probability densities,
G. Cowan Lectures on Statistical Data Analysis Lecture 3 page 1 Lecture 3 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and.
Statistical Decision Theory Bayes’ theorem: For discrete events For probability density functions.
26134 Business Statistics Tutorial 11: Hypothesis Testing Introduction: Key concepts in this tutorial are listed below 1. Difference.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #25.
G. Cowan, RHUL Physics Discussion on significance page 1 Discussion on significance ATLAS Statistics Forum CERN/Phone, 2 December, 2009 Glen Cowan Physics.
G. Cowan CERN Academic Training 2010 / Statistics for the LHC / Lecture 41 Statistics for the LHC Lecture 4: Bayesian methods and further topics Academic.
Review of Statistics.  Estimation of the Population Mean  Hypothesis Testing  Confidence Intervals  Comparing Means from Different Populations  Scatterplots.
1 Introduction to Statistics − Day 4 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Lecture 2 Brief catalogue of probability.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #24.
G. Cowan Lectures on Statistical Data Analysis Lecture 8 page 1 Statistical Data Analysis: Lecture 8 1Probability, Bayes’ theorem 2Random variables and.
Statistical Inference Statistical inference is concerned with the use of sample data to make inferences about unknown population parameters. For example,
1 Introduction to Statistics − Day 3 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Brief catalogue of probability densities.
G. Cowan CERN-JINR 2009 Summer School / Topics in Statistical Data Analysis page 1 Topics in Statistical Data Analysis for HEP Lecture 1: Bayesian Methods.
G. Cowan Computing and Statistical Data Analysis / Stat 9 1 Computing and Statistical Data Analysis Stat 9: Parameter Estimation, Limits London Postgraduate.
G. Cowan Lectures on Statistical Data Analysis Lecture 9 page 1 Statistical Data Analysis: Lecture 9 1Probability, Bayes’ theorem 2Random variables and.
LIGO- G Z August 17, 2005August 2005 LSC Meeting 1 Bayesian Statistics for Burst Search Results LIGO-T Keith Thorne and Sam Finn Penn State.
G. Cowan Lectures on Statistical Data Analysis Lecture 6 page 1 Statistical Data Analysis: Lecture 6 1Probability, Bayes’ theorem 2Random variables and.
In Bayesian theory, a test statistics can be defined by taking the ratio of the Bayes factors for the two hypotheses: The ratio measures the probability.
G. Cowan Lectures on Statistical Data Analysis Lecture 12 page 1 Statistical Data Analysis: Lecture 12 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 10 page 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem 2Random variables and.
G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability Definition, Bayes’ theorem, probability densities and their properties,
G. Cowan RHUL Physics Statistical Issues for Higgs Search page 1 Statistical Issues for Higgs Search ATLAS Statistics Forum CERN, 16 April, 2007 Glen Cowan.
1 Nuisance parameters and systematic uncertainties Glen Cowan Royal Holloway, University of London IoP Half.
G. Cowan SOS 2010 / Statistical Tests and Limits -- lecture 31 Statistical Tests and Limits Lecture 3 IN2P3 School of Statistics Autrans, France 17—21.
Statistics for the LHC Lecture 3: Setting limits
Lecture 4 1 Probability (90 min.)
Lecture 3 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
Lecture 4 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
TAE 2018 Benasque, Spain 3-15 Sept 2018 Glen Cowan Physics Department
Statistical Tests and Limits Lecture 2: Limits
TAE 2017 / Statistics Lecture 2
Introduction to Statistics − Day 4
Lecture 4 1 Probability Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests general.
Statistics for HEP Roger Barlow Manchester University
Computing and Statistical Data Analysis / Stat 10
Presentation transcript:

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 1 Lecture 4 1 Probability (90 min.) Definition, Bayes’ theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics, multivariate methods, goodness-of-fit tests 3 Parameter estimation (90 min.) general concepts, maximum likelihood, variance of estimators, least squares 4 Interval estimation (60 min.) setting limits 5 Further topics (60 min.) systematic errors, MCMC

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 2 Interval estimation — introduction Often use +/  the estimated standard deviation of the estimator. In some cases, however, this is not adequate: estimate near a physical boundary, e.g., an observed event rate consistent with zero. In addition to a ‘point estimate’ of a parameter we should report an interval reflecting its statistical uncertainty. Desirable properties of such an interval may include: communicate objectively the result of the experiment; have a given probability of containing the true parameter; provide information needed to draw conclusions about the parameter possibly incorporating stated prior beliefs. We will look briefly at Frequentist and Bayesian intervals.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 3 Frequentist confidence intervals Consider an estimator for a parameter  and an estimate We also need for all possible  its sampling distribution Specify upper and lower tail probabilities, e.g.,  = 0.05,  = 0.05, then find functions u  (  ) and v  (  ) such that:

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 4 Confidence interval from the confidence belt Find points where observed estimate intersects the confidence belt. The region between u  (  ) and v  (  ) is called the confidence belt. This gives the confidence interval [a, b] Confidence level = 1  = probability for the interval to cover true value of the parameter (holds for any possible true  ).

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 5 Confidence intervals by inverting a test Confidence intervals for a parameter  can be found by defining a test of the hypothesized value  (do this for all  ): Specify values of the data that are ‘disfavoured’ by  (critical region) such that P(data in critical region) ≤  for a prespecified , e.g., 0.05 or 0.1. If data observed in the critical region, reject the value . Now invert the test to define a confidence interval as: set of  values that would not be rejected in a test of size  (confidence level is 1  ). The interval will cover the true value of  with probability ≥ 1 . Equivalent to confidence belt construction; confidence belt is acceptance region of a test.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 6 Confidence intervals in practice The recipe to find the interval [a, b] boils down to solving → a is hypothetical value of  such that → b is hypothetical value of  such that

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 7 Meaning of a confidence interval

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 8 Central vs. one-sided confidence intervals

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 9 Intervals from the likelihood function In the large sample limit it can be shown for ML estimators: defines a hyper-ellipsoidal confidence region, If then (n-dimensional Gaussian, covariance V)

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 10 Approximate confidence regions from L(  ) So the recipe to find the confidence region with CL = 1  is: For finite samples, these are approximate confidence regions. Coverage probability not guaranteed to be equal to  ; no simple theorem to say by how far off it will be (use MC). Remember here the interval is random, not the parameter.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 11 Example of interval from ln L(  ) For n=1 parameter, CL = 0.683, Q  = 1.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 12 Setting limits on Poisson parameter Consider again the case of finding n = n s + n b events where n b events from known processes (background) n s events from a new process (signal) are Poisson r.v.s with means s, b, and thus n = n s + n b is also Poisson with mean = s + b. Assume b is known. Suppose we are searching for evidence of the signal process, but the number of events found is roughly equal to the expected number of background events, e.g., b = 4.6 and we observe n obs = 5 events. → set upper limit on the parameter s. The evidence for the presence of signal events is not statistically significant,

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 13 Upper limit for Poisson parameter Find the hypothetical value of s such that there is a given small probability, say,  = 0.05, to find as few events as we did or less: Solve numerically for s = s up, this gives an upper limit on s at a confidence level of 1 . Example: suppose b = 0 and we find n obs = 0. For 1  = 0.95, →

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 14 Calculating Poisson parameter limits To solve for s lo, s up, can exploit relation to  2 distribution: Quantile of  2 distribution For low fluctuation of n this can give negative result for s up ; i.e. confidence interval is empty.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 15 Limits near a physical boundary Suppose e.g. b = 2.5 and we observe n = 0. If we choose CL = 0.9, we find from the formula for s up Physicist: We already knew s ≥ 0 before we started; can’t use negative upper limit to report result of expensive experiment! Statistician: The interval is designed to cover the true value only 90% of the time — this was clearly not one of those times. Not uncommon dilemma when limit of parameter is close to a physical boundary, cf. m estimated using E 2  p 2.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 16 Expected limit for s = 0 Physicist: I should have used CL = 0.95 — then s up = Even better: for CL = we get s up = 10  ! Reality check: with b = 2.5, typical Poisson fluctuation in n is at least √2.5 = 1.6. How can the limit be so low? Look at the mean limit for the no-signal hypothesis (s = 0) (sensitivity). Distribution of 95% CL limits with b = 2.5, s = 0. Mean upper limit = 4.44

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 17 The Bayesian approach In Bayesian statistics need to start with ‘prior pdf’  (  ), this reflects degree of belief about  before doing the experiment. Bayes’ theorem tells how our beliefs should be updated in light of the data x: Integrate posterior pdf p(  | x) to give interval with any desired probability content. For e.g. Poisson parameter 95% CL upper limit from

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 18 Bayesian prior for Poisson parameter Include knowledge that s ≥0 by setting prior  (s) = 0 for s<0. Often try to reflect ‘prior ignorance’ with e.g. Not normalized but this is OK as long as L(s) dies off for large s. Not invariant under change of parameter — if we had used instead a flat prior for, say, the mass of the Higgs boson, this would imply a non-flat prior for the expected number of Higgs events. Doesn’t really reflect a reasonable degree of belief, but often used as a point of reference; or viewed as a recipe for producing an interval whose frequentist properties can be studied (coverage will depend on true s).

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 19 Bayesian interval with flat prior for s Solve numerically to find limit s up. For special case b = 0, Bayesian upper limit with flat prior numerically same as classical case (‘coincidence’). Otherwise Bayesian limit is everywhere greater than classical (‘conservative’). Never goes negative. Doesn’t depend on b if n = 0.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 20 Likelihood ratio limits (Feldman-Cousins) Define likelihood ratio for hypothesized parameter value s: Here is the ML estimator, note Critical region defined by low values of likelihood ratio. Resulting intervals can be one- or two-sided (depending on n). (Re)discovered for HEP by Feldman and Cousins, Phys. Rev. D 57 (1998) 3873.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 21 More on intervals from LR test (Feldman-Cousins) Caveat with coverage: suppose we find n >> b. Usually one then quotes a measurement: If, however, n isn’t large enough to claim discovery, one sets a limit on s. FC pointed out that if this decision is made based on n, then the actual coverage probability of the interval can be less than the stated confidence level (‘flip-flopping’). FC intervals remove this, providing a smooth transition from 1- to 2-sided intervals, depending on n. But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, p-value of s=0 still substantial. Part of upper-limit ‘wasted’?

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 22 Properties of upper limits Upper limit s up vs. nMean upper limit vs. s Example: take b = 5.0, 1   = 0.95

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 23 Upper limit versus b If n = 0 observed, should upper limit depend on b? Classical: yes Bayesian: no FC: yes Feldman & Cousins, PRD 57 (1998) 3873

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 24 Coverage probability of intervals Because of discreteness of Poisson data, probability for interval to include true value in general > confidence level (‘over-coverage’)

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 25 Wrapping up lecture 4 In large sample limit and away from physical boundaries,  standard deviation is all you need for 68% CL. Frequentist confidence intervals Complicated! Random interval that contains true parameter with fixed probability. Can be obtained by inversion of a test; freedom left as to choice of test. Log-likelihood can be used to determine approximate confidence intervals (or regions) Bayesian intervals Conceptually easy — just integrate posterior pdf. Requires choice of prior.

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 26 Lecture 4 — extra slides

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 27 Interval from Gaussian distributed estimator

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 28 Interval for Gaussian estimator (2)

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 29 Quantiles of the standard Gaussian

G. Cowan Lectures on Statistical Data Analysis Lecture 4 page 30 Quantiles of the standard Gaussian (2)