DFT evolutionary search for Mg 2 Si under pressure Yu.V. Luniakov Institute of Automation and Control Processes, Vladivostok, Russia Department of Surface Physics
Оbjectives To search for new structures near transition pressures To study how Universal Structure Predictor for Evolutionary Xtallography can reproduce the known structure
Оbjectives To study how Universal Structure Predictor for Evolutionary Xtallography can reproduce the known structure To search for new structures near transition pressures
A.R. Oganov. Modern Methods of Crystal Structure Prediction. (Wiley- VCH., 2010) ISBN:
Methodology A.R. Oganov Modern Methods of Crystal Structure Prediction. (Wiley-VCH., 2010) ISBN:
Object of investigation
Thermoelectric conversion effective material Abundant and environmental friendly material
225, Fm3m62, Pnma 194, P6 3 /mmc Si Mg P=7.5 GPa P=21.3 GPa
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: Details of total energy calculations: Computational details: E cut = eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ Si 8 Mg Random initial distributions
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: Details of total energy calculations: Computational details: E cut = eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 Si Mg Random initial distributions
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: Details of total energy calculations: Computational details: E cut = eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 Si Mg Random initial distributions
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: Details of total energy calculations: Computational details: E cut = eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 Si Mg Random initial distributions
VASP code, Kresse, G. and Furhmüller, J. (2007). Institut für Materialphysik. Universität Wien, Austria Conjugate gradient type of ionic relaxation Generalized Gradient Approximation of Perdew Burke Enzerof form 1 for the exchange and correlation functional 1 J.P. Perdew, K. Burke, M. Ernzerhof (1996). Phys. Rev. Lett. 77: projector-augmented wave pseudopotentials (PAW) Kresse, G. and Joubert, D. (1999). Phys. Rev. B 59: Details of total energy calculations: Computational details: E cut = eV Unit cell consists of 4 Si and 8 Mg atoms k-point meshes resolution: 2 0.01 Å -1 – 2 0.02 Å -1 ~ 200 Si Mg Random initial distributions
Mg 2 Si crystal at ambient pressure conditions
Mg 2 Si crystal at P = 5 GPa
Mg 2 Si crystal at P = 10 GPa
Mg 2 Si crystal at P = 15 GPa
Mg 2 Si crystal at P = 20 GPa
Mg 2 Si crystal at P = 25 GPa
Theory Experiment 225, Fm3m62, Pnma 194, P6 3 /mmc 225, Fm3m 62, Pnma 63, Cmcm 194, P6 3 /mmc P=7.5 GPa P=21.3 GPa
Theory Experiment 225, Fm3m62, Pnma 194, P6 3 /mmc 225, Fm3m 62, Pnma 63, Cmcm 194, P6 3 /mmc P=7.5 GPa P=21.3 GPa ? ? ?
Enthalpies of various structures Mg 2 Si as a function of pressure
5.6 GPa 22.3 GPa
Enthalpies of various structures Mg 2 Si as a function of pressure 5.6 GPa 22.3 GPa 19.6 GPa24.1 GPA J.-H. Hao, Z.-G. Guo, Q.-H. Jin, Solid State Commun. 150, 2299 (2010). [Yu Ben-Hai and Chen Dong, Chin. Phys. B 20, (2011). 6.1 GPa Wien2k F. Kalarasse, B. Bennecer, J. Phys. Chem. Solids 69, 1775 (2008). 8.4 GPa Сaster F. Yu, J.X. Sun, W. Yang, R.G. Tian, G.F. Ji, Solid State Commun. 150, 620 (2010) 12.8 GPa Сaster J.-H. Hao, Z.-G. Guo, Q.-H. Jin, Solid State Commun. 150, 2299 (2010).
Enthalpies of various structures Mg 2 Si as a function of pressure 5.6 GPa 22.3 GPa 19.6 GPa24.1 GPA J.-H. Hao, Z.-G. Guo, Q.-H. Jin, Solid State Commun. 150, 2299 (2010). [Yu Ben-Hai and Chen Dong, Chin. Phys. B 20, (2011). 6.1 GPa Wien2k F. Kalarasse, B. Bennecer, J. Phys. Chem. Solids 69, 1775 (2008). 8.4 GPa Сaster F. Yu, J.X. Sun, W. Yang, R.G. Tian, G.F. Ji, Solid State Commun. 150, 620 (2010) 12.8 GPa Сaster J.-H. Hao, Z.-G. Guo, Q.-H. Jin, Solid State Commun. 150, 2299 (2010). P=7.5 GPa P=21.3 GPa
Experiment Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc ? 225, Fm3m62, Pnma 194, P6 3 /mmc
Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc
Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc Side view
Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc Side view Top view
Theory 62, Pnma 63, Cmcm 194, P6 3 /mmc Side view Top view
Theory Top view 63, Cmcm 194, P6 3 /mmc
Theory Top view 63, Cmcm 194, P6 3 /mmc
Theory Top view 63, Cmcm 194, P6 3 /mmc
Theory Mg1(1/3, 2/3, 1/4) Mg2 (0, 0, 0) Si (1/3, 2/3, 3/4) 63, Cmcm 194, P6 3 /mmc
Energy differences between and Pressure, GPa SI, Å Mg, Å E, eV , P6 3 /mmc 63, Cmcm
Polymorphism of Mg 2 Sn at high temperatures and pressures T. I. Dyuzheva, S. S. Kabalkina, and L.F. Vereshchanig, Kristallografiya, 17, №4, р pseudohexagonal network of Ni atoms in the Ni 2 Si structure
Conclusion 1.DFT evolutionary search for global minima of Mg 2 Si silicide reproduces the experimental structures at pressure range 0–25 GPa 2.The P63/mmc structure is not the global minimum one. 3.A new possible high-pressure structure Cmcm was predicted, that is a little more stable than that.
Enthalpies of various structures Mg 2 Si as a function of pressure
Symmetry Identification EA Sym.group: Direct Si Mg 1 2 Direct Sym.group: 99
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å 6.36
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å
Lattice parameters of Fm3m, Pnma and P6 3 /mmc equilibrium structures Solid State Commun. 150, 2299 (2010)] 6.35 Å 9 %-12 % 14 %
Enthalpies of various structures Mg 2 Si as a function of pressure 1