LCLS Facility Planning for LCLS-II. 2 LCLS vs. LCLS-II NowHXU - CuSXU - CuHXU - SCSXU - SC Photon Energy Range (eV)250-12800400 - 25000250 - 60001000-5000200-1300.

Slides:



Advertisements
Similar presentations
Soft X-ray Self-Seeding
Advertisements

LCLS-II Scientific Opportunities Workshops LCLS-II Status David Schultz 9-12 February 2015.
Research Opportunities at LCLS September 2011 Joachim Stöhr.
1 Enhancements to the Linac Coherent Light Source.
Hal Tompkins FEE/FEL June 16, FEE/FEL Commissioning Overview By Hal Tompkins Photon Beam Systems Deputy.
1 John Arthur 1 FEH Status CXI Review June 3, 2009 FEH Layout, Status John Arthur – LCLS Expt’l Facilities Div June 3, 2009.
John Arthur X-ray November 11, 2008 SLAC National Accelerator Laboratory 1 X-ray Overview LCLS Directorate structure.
Richard M. Bionta XTOD October 12, 2004 UCRL-PRES-XXXXX X Ray Transport, Optics, and Diagnostics, Overview Facility Advisory Committee.
John Arthur LCLS September 26, 2005 John Arthur SLAC LCLS Construction and Science.
LCLS Transition to Science DOE Status Review of the LUSI MIE Project The Instrument Readiness Review Process John Arthur LCLS Experimental Facilities Division.
J. B. Hastings LUSI Overview LCLS FAC March 20, 2007 LUSI Overview J. B. Hastings January 2007 Lehman Review Response to Lehman Review.
David Fritz LCLS FAC Meeting Oct. 30, X-ray Pump-Probe Instrument David Fritz Instrument Overview Instrument Layout System.
Diffraction studies of stimulated dynamics (pump-probe) Coherent-scattering studies of nanoscale fluctuations Atomic, molecular and optical science High.
J. B. Hastings LCLS FAC April 17, 2007 Coherent X-Ray Imaging Coherent Single Particle Imaging (WBS 1.3) J. B. Hastings*
LCLS Studies of Laser Initiated Dynamics Jorgen Larsson, David Reis, Thomas Tschentscher, and Kelly Gaffney provided LUSI management with preliminary Specifications.
Aymeric Robert XCS 11/12/2008 SLAC National Accelerator Laboratory 1 X -ray C orrelation S pectroscopy Instrument Aymeric.
John Arthur Photon Systems April 16, LCLS Photon Systems Status Technical status and accomplishments Response to.
John Arthur Photon October 18, 2005 LCLS Photon Systems Status John Arthur SLAC.
John Arthur Photon October 27, Photon Systems Overview John Arthur SLAC.
John Arthur Photon April 20, 2006 Photon Systems Update John Arthur SLAC Photon Systems Manager.
1 Michael Rowen 1 SXR Instrument FAC SXR Instrument Michael Rowen – Engineering Physicist June 9, 2009.
Sébastien Boutet LCLS FAC June Coherent X-Ray Imaging 1 LUSI Coherent X-ray Imaging Instrument Sébastien Boutet – CXI.
John Arthur PIXEL Project April 7, 2005 Status of the Proposed PIXEL Project John Arthur SSRL/SLAC Photon Instrumentation.
LCLS Transition to Science DOE Status Review of the LUSI MIE Project Near term opportunities for LCLS 'upgrades' J. Hastings for the LCLS Experimental.
John Arthur X-ray April 20, 2006 X-Ray Beamline and Experiment Layout John Arthur LCLS Photon Systems Manager.
John Arthur Mirror June 23, Effects of LCLS X-Ray Mirrors John Arthur Presenting work by Peter Stefan and Mike.
1 Sébastien Boutet 1 Coherent X-ray Imaging Instrument FAC Meeting, June Coherent X-ray Imaging Instrument Sébastien Boutet.
Strong-field physics in the x-ray regime Louis DiMauro ITAMP FEL workshop June 21, 2006 fundamental studies of intense laser-atom interactions generation.
J. B. Hastings LUSI DOE Review July 23, 2007 X-ray Optics 1 X-ray Optics J. B. Hastings Beam definition Attenuators Slits Pulse picker.
Birth of the X-Ray Laser and a New Era of Science Joachim Stohr
Status of LCLS A. Brachmann, SLAC National Accelerator Laboratory.
Low Emittance RF Gun Developments for PAL-XFEL
Frontiers of THz Science ZX Shen SLAC Chief Scientist 1.
Workshop Overview & Charge, Science Examples, Instrumentation R&D Bill Schlotter Feb. 11, 2015.
LCLS-II Capabilities & Overview LCLS-II Science Opportunities Workshop Tor Raubenheimer February 10 th, 2015.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
Proposed NSLS X13B Microdiffraction Instrument Source & Optics James M. Ablett National Synchrotron Light Source.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
Workshop Overview, Charge and Deliverables Joachim Stöhr.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
Design of single-shot time/energy- resolved XES spectrometer for the LCLS Katherine Spoth Dennis Nordlund, mentor August 11, 2011.
SCU 3-Lab Review Meeting, Dec. 16, 2014 SCU Presentations Today Intro. & Performance Motivations (P. Emma, SLAC, 20+5) Conceptual Cryostat Design: Option-A.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
Yiping Feng LUSI DOE Review July 23, 2007 Diagnostics (WBS 1.5)1 Diagnostics (WBS 1.5) Yiping Feng Motivations System Specifications.
LCLS-II: Accelerator Systems LCLS SAC Meeting P. Emma et al. April 23, 2010.
Lessons Learned From the First Operation of the LCLS for Users Presented by Josef Frisch For the LCLS March 14, 2010.
G. Penn SLAC 25 September 2013 Comments on LCLS-IISC Design.
LCLS-II Project Overview David Schultz LCLS-II Deputy Project Director March 19, 2012.
LCLS-II Introduction. LCLS-II Project Plan and Scope Overview 13 September 2013.
LCLS-II: An upgrade for the LINAC Coherent Light Source
MSc-Student Activities at the European XFEL
Introduction to Synchrotron Radiation
X-ray Correlation Spectroscopy (WBS 1.4) Aymeric Robert
Experimental Facilities Planning
LCLS Instrument Development
LCLS-II-HE FEL Facility Overview
LCLS Ultrafast Science Instruments
LCLS-II-HE FEL Facility Overview
Multiplexing of LCLS II SXR beamlines using a canted undulator concept
LCLS Commissioning Parameters
WBS 5.0 LCLS Strategic Projects Division
X-Ray Transport, Optics, and Diagnostics WBS Alan J
X-ray Pump-Probe Instrument
AMO Early Science Capability
John Arthur – LCLS Experimental Operations
PIXEL Project Status John Arthur Photon Instrumentation for
Coherent X-ray Imaging Instrument WBS 1.3
X-ray Correlation Spectroscopy Instrument
X-Ray Endstation Systems (XES) 2006 Schedule
LCLS Photon Systems Overview
Presentation transcript:

LCLS Facility Planning for LCLS-II

2 LCLS vs. LCLS-II NowHXU - CuSXU - CuHXU - SCSXU - SC Photon Energy Range (eV) Repetition Rate (Hz) ,000 Per Pulse Energy (mJ)~ 4 ~ 8~ 0.2~ 1 Photons/Second~ ~ ~ GeV SC Linac In sectors 0-10 NEHFEH 14 GeV LCLS linac still used for x-rays up to 25 keV North side source: keV ( ≥ 100kHz) m

The scientific strategy for LCLS is being driven by the mid- to long- term potential of LCLS-II LCLS-II Science opportunities LCLS-II Science opportunities Prioritized 5-10 year budget Prioritized 5-10 year budget SAC July FY16+ April Strategic development plan Strategic development plan Assess how LCLS can address the “grand-challenges” Solicit community-wide input Compile a coherent document of “science opportunities” Derive characteristic performance parameters and technical requirements Perform facility-wide assessment of development needs Solicit community-wide feedback Define year-by-year requirements for R&D, new system deployment, commissioning, and operational delivery 3

4 Facility Response

5 LCLS-II Science Opportunities Mapping

6 Space is a Challenge

SXU: Flat Mirror 0.4 – 2.5 keV NEH 1.2 SXU: Flat Mirror 0.4 – 2.5 keV NEH 1.2 SXU: Flat Mirror keV NEH 1.2 SXU: Flat Mirror keV NEH 1.2 SXU: Bendable Mirror 0.25 – 1.2 keV NEH 2.1, NEH 2.2 SXU: Bendable Mirror 0.25 – 1.2 keV NEH 2.1, NEH 2.2 HXU: Flat Mirror 1 – 6 keV NEH 1.2 HXU: Flat Mirror 1 – 6 keV NEH 1.2 HXU: Flat Mirror 2.5 – 25 keV XPP, XCS, MFX, CXI, MEC HXU: Flat Mirror 2.5 – 25 keV XPP, XCS, MFX, CXI, MEC SXU: Monochromator 0.25 – 1.2 keV NEH 2.1, NEH 2.2 SXU: Monochromator 0.25 – 1.2 keV NEH 2.1, NEH 2.2 SXU: Bendable Mirror 0.25 – 1.2 keV NEH 2.1 SXU: Bendable Mirror 0.25 – 1.2 keV NEH 2.1 HXU: Flat Mirror keV NEH 1.2, XPP, XCS, MFX, CXI, MEC HXU: Flat Mirror keV NEH 1.2, XPP, XCS, MFX, CXI, MEC

8 Updated Layout – NEH 1 st Floor [Option 1]

9 Updated Layout – NEH Subbasement [Option 1]

10 Alternate Options – Option 1 SB 1st SB 1st

11 Alternate Options – Option 2 SB 1st SB 1st

12 Alternate Options – Option 3 SB 1st SB 1st

13 Distribution Optics

Horizontal Mirror deg Horizontal Mirror deg Horizontal Mirror deg Horizontal Mirror deg Vertical Mirror -2.1 deg Vertical Mirror -2.1 deg Horizontal Mirror +3.0 deg Horizontal Mirror +3.0 deg Vertical Grating Mono -4.9 deg Vertical Grating Mono -4.9 deg Horizontal Mirror +0.24/0.70 deg Horizontal Mirror +0.24/0.70 deg Horizontal Mirror deg Horizontal Mirror deg Horizontal Mirror deg Horizontal Mirror deg Angles are deflection and follow right hand rule!!! Front End Enclosure (FEE) Horizontal KB +1.6 deg Horizontal KB +1.6 deg Vertical KB +1.6 deg Z=XX m Vertical KB +1.6 deg Z=XX m +X +Z

15 Acceptance of FEE Mirrors Assumptions: ~120 m source to mirror distance ~ 67 m from end of SXU to FEE ~ 15 m from source to end of SXU ~ 35 m – length of FEE 950 mm mirror useable length 40% larger beam than diffraction limit DescriptionMirror AngleAcceptancePhoton Energy (2x FWHM) HOMS0.12 deg1.99 mm~ 2750 eV HXU Tender0.35 deg5.80 mm~ 1000 eV SXU Tender0.59 deg9.78 mm~ 375 eV AMO KB0.80 deg13.26 mm~ 265 eV 2 nd Floor1.05 deg17.41 mm< 200 eV 2 nd Floor KB1.50 deg24.87 mm< 200 eV Current HOMS

NEH “AMO 2.0” Horizontal KB +1.6 deg Z=23.8 m Horizontal KB +1.6 deg Z=23.8 m Vertical KB +1.6 deg Z=21.5 m Vertical KB +1.6 deg Z=21.5 m

Horizontal Mirror deg Z=11.3 m Horizontal Mirror deg Z=11.3 m Horizontal Mirror deg Z=12.3 m Horizontal Mirror deg Z=12.3 m Horizontal Mirror deg Z=XX m Horizontal Mirror deg Z=XX m Horizontal Mirror deg Z=XX m Horizontal Mirror deg Z=XX m NEH 1.2 – Tender X-ray Instrument

Vertical Mirror -2.1 deg Z=16.2 m Vertical Mirror -2.1 deg Z=16.2 m Horizontal Mirror +3.0 deg Z=21.5 m Horizontal Mirror +3.0 deg Z=21.5 m Vertical Grating Mono -4.9 deg Z=18.7 m Vertical Grating Mono -4.9 deg Z=18.7 m NEH 2.1 & nd Floor Beamlines

Vertical Mirror -2.1 deg Z=16.2 m Vertical Mirror -2.1 deg Z=16.2 m Horizontal Mirror +3.0 deg Z=21.5 m Horizontal Mirror +3.0 deg Z=21.5 m Vertical Grating Mono -4.9 deg Z=18.7 m Vertical Grating Mono -4.9 deg Z=18.7 m NEH 2.1 & nd Floor Beamlines M1 FEL sourceGratingSlit R M1 = 900 km R M1 = 12 km R M1 = 4 km R M1 = 3.8 km D. Cocco

Horizontal Mirror deg Z=XX m Horizontal Mirror deg Z=XX m Horizontal Mirror deg Z=26.7 m Horizontal Mirror deg Z=26.7 m Hard X-ray Mirrors (aka HOMS)

21 Instruments

22 Instruments (Concepts in Development) NEH 1.1NEH 1.2NEH 2.1NEH 2.2 Primary Science Area(s) Atomic & Molecular Physics High Field Physics Nonlinear Interactions Biology Materials Science Nonlinear Condensed MatterChemistry Condensed Matter Primary X-ray Techniques Electron/Ion Spectroscopy COLTRIMS Scattering PES XES High Res. RIXSModerate Res. RIXS Scattering XES Photon Energy Range eV eV eV Focal Spot Size3 µm / 200 nm1 µm3 x 10 µm3-5 µm Claim to FameMinimalist 200 nm focus Two FELs at the same time 6-m spectrometer(s)Catch all

23 End

24 Backup

25 Future Expansion of LCLS Complex SLAC has extensive infrastructure that will allow expansion New tunnels are possible north and south of existing LCLS tunnel (complete design for LCLS-II Phase I ) and could be optimized for long, high pulse energy, hard X-ray FEL’s Original research halls: ESA and ESB suitable for shorter, soft X-ray FEL’s

26 Coarse Cost Estimate (FY15 Dollars) FY16FY17FY18FY19FY20FY21FY22FY23Total NEH Mods Conceptual Planning NEH 1.1 – “AMO” NEH 1.2 – “Tender” NEH 2.1 – “HR RIXS” NEH 2.2 – “SXR” Hard X-ray Instruments Other (Data, Networks, etc.) TOTAL

27 NEH 1.1 – Atomic & Molecular Physics Measures energy & momentum of electrons & ions high repetition rateRare coincidence events (~10 -5 ) ⇒ high repetition rate – Torr vacuum requirement – Torr vacuum requirement Dynamic Molecular Reaction Microscope for Coincidence Imaging Dynamic Molecular Reaction Microscope for Coincidence Imaging

28 NEH 1.2 – Tender X-ray Instrument  sample shapes of individual, randomly-oriented molecules one-by-one

29 NEH 2.1 – High Resolution RIXS electron pairing energy ~20 meV Cuprate X-ray Raman Spectrum magnon bi-magnon phonon

30 NEH 2.2 – Monochromatic Soft X-ray

31 Schedule

32 Long Range Operations Schedule

33 Instrument/Area Leads NEH 1.1 Timur Osipov JC Castanga NEH 1.2 Andy Aquila Paul Montanez NEH 2.1/2.2 Georgi Dakovski Bill Schlotter Dave Rich Daniele Cocco Lin Zhang