Electron-nuclear spin dynamics in optically pumped semiconductor quantum dots K.V.Kavokin A.F.Ioffe Physico-Technical Institute, St.Petersburg, Russia.

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Fluctuations in Strongly Interacting Fermi Gases Christian Sanner, Jonathon Gillen, Wujie Huang, Aviv Keshet, Edward Su, Wolfgang Ketterle Center for Ultracold.
Spin transport in spin-orbit coupled bands
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
DYNAMICAL PROPERTIES OF THE ANISOTROPIC TRIANGULAR QUANTUM
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
Optical study of Spintronics in III-V semiconductors
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
COLD DIPOLAR EXCITONS ON A CHIP – FROM FUNDAMENTAL MANY-BODY PHYSICS TO MULTI-FUNCTIONAL CIRCUITRY Ronen Rapaport The Racah Institute of Physics and the.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Optical quantum control in semiconductors nano-systems Carlo Piermarocchi Department of Physics and Astronomy Michigan State University, East Lansing,
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Absorption Spectroscopy J. Stöhr, NEXAFS SPECTROSCOPY,
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
Reversing chaos Boris Fine Skolkovo Institute of Science and Technology University of Heidelberg.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
ITOH Lab. Hiroaki SAWADA
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Dynamical decoupling in solids
Theory of Intersubband Antipolaritons Mauro F
Charge Carrier Related Nonlinearities
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
Hall effect in pinned and sliding states of NbSe 3 A. Sinchenko, R. Chernikov, A. Ivanov MEPhI, Moscow P. Monceau, Th. Crozes Institut Neel, CNRS, Grenoble.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Exciton and Biexciton Energies in GaN/AlN Quantum Dots G. Hönig, A. Schliwa, D. Bimberg, A. Hoffmann Teilprojekt A5 Institut für Festkörperphysik Technische.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Magnetization dynamics
Interface-induced lateral anisotropy of semiconductor heterostructures M.O. Nestoklon, Ioffe Physico-Technical Institute, St. Petersburg, Russia JASS 2004.
Charge Order-Disorder Phase Transition Detected By EPR in α'-(BEDT-TTF) 2 IBr 2 1 Roman Morgunov, 1 Alexei Dmitriev, 1 Alisa Chernenkaya, 2 Kaoru Yamamoto,
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
J.P. Eisenstein, Caltech, DMR If it were not for the Coulomb repulsion between electrons, iron would not be ferromagnetic. It would instead be.
Physics 541 A quantum approach to condensed matter physics.
1 Department of Physics , University at Buffalo, SUNY APS March Meeting 2015 Phonon mediated spin relaxation in a moving quantum dot: Doppler shift, Cherenkov.
Nano and Giga Challenges in Microelectronics, Cracow, 2004 Spin Injection in Semiconductor Nanostructures Alexey Toropov Ioffe Institute, St.Petersburg,
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Memory effects in electron glasses Markus Müller Eran Lebanon Lev Ioffe Rutgers University, Piscataway NJ 10 August, 2005, Leiden.
Tunable excitons in gated graphene systems
Zeeman effect HFS and isotope shift
Gauge structure and effective dynamics in semiconductor energy bands
Nuclear Magnetic Resonance
Choreographing a Whirling Dervish
Hole Spin Decoherence in Quantum Dots
PHY 741 Quantum Mechanics 12-12:50 AM MWF Olin 103
Presentation transcript:

Electron-nuclear spin dynamics in optically pumped semiconductor quantum dots K.V.Kavokin A.F.Ioffe Physico-Technical Institute, St.Petersburg, Russia Thanks to: Igor Merkulov, Vladimir Kalevich, Vladimir Korenev, Roslan Dzhioev (Ioffe Institute) Alexander Tartakovskii, Evgeniy Chekhovich, Maurice Skolnick (Sheffield) Thierry Amand, Xavier Marie, Bernhard Urbaszek (Toulouse)

Single QD spectroscopy Quantum dots

Electrons in conduction band: contact Fermi interaction Valence band holes: magnetic dipole interaction, much weaker

Nuclear spin fields acting on a localized electron b) Disordered nuclear spinsa) Polarized nuclear spins For GaAs

D. Gammon, Al.L. Efros, T.A. Kennedy, M. Rosen, D.S. Katzer, D. Park, S.W. Brown,V.L. Korenev, I.A. Merkulov, Phys. Rev. Lett. 86, 5176 (2001)

-1/2 +3/2

Bulk semiconductor with cubic lattice +3/2+1/2-1/2-3/2 +1/2-1/2

Quantum wells, quantum dots +3/2 +1/2-1/2 -3/2 +1/2-1/2

Relaxation by nuclei: M.I.Dyakonov, V.I.Perel JETP 65, 362 (1973) Nuclear spins “Motional slowing” (short correlation time):

1 2 Spin relaxation of donor-bound electrons

R.I.Dzhioev, K.V.Kavokin, V.L.Korenev, M.V.Lazarev, B.Ya.Meltser, M.N.Stepanova, B.P.Zakharchenya, D.Gammon, D.S.Katzer, Phys.Rev.B 66, (2002)

Electron spin precession in hyperfine field of nuclear spin fluctuations I.A. Merkulov, Al.L. Efros, M. Rosen, Phys. Rev. B 65, (2002) P.F. Braun, X. Marie, L. Lombez, B. Urbaszek, T. Amand, P. Renucci, V. Kalevich, K. Kavokin, O. Krebs, P. Voisin, Y. Masumoto, Phys. Rev. Letters 94, (2005) B S

Electrons in conduction band: contact Fermi interaction The total angular momentum is conserved!

Dynamic polarization of nuclear spins by hyperfine interaction Spin influx into the nuclear spin system: R is the rate of a non-equilibrium process is a pseudovector changing sign under time inversion Optical orientation: If

P. Maletinsky, C.W. Lai, A. Badolato, A. Imamoglu, Phys. Rev. B 75, (2007) P.-F. Braun, B. Urbaszek, T. Amand, X. Marie, O. Krebs, B. Eble, A. Lemaitre, P. Voisin, Phys. Rev. B 74, (2006)

Dynamic polarization of nuclear spins by hyperfine interaction with unpolarised electrons B +1 0 Nuclear spins Electron spin sublevels +BN+BN

Pump

V.L.Korenev “Dynamic self-polarization of nuclei in low-dimensional systems”, JETP Letters, 1999 M.I.Dyakonov, V.I.Perel, JETP Letters, 1972 – dynamic self-polarization via Overhauser effect in the nuclear magnetic field requires low temperatures (below 1K) Dark excitons Bright excitons

Why magnetic field is needed to polarize nuclei? Magnetic dipole-dipole interaction Local field B L B>>B L : T N =T 1, 10 3 s B~B L : T N =T s

When we polarize nuclear spins in a magnetic field, we change the energy of the nuclear spin system!

Spin temperature A.Redfield, Phys.Rev.98, 1787 (1955) For semiconductors: M.I.Dyakonov, V.I.Perel, JETP 41,759 (1975); D.Paget et al, PRB 15, 5780 (1977)

Spin temperature Optical cooling of the nuclear spin system by oriented electrons. Magnetic field dependences of reciprocal spin-temperature (1) and mean spin of nuclei (2)

V.K.Kalevich et al, JETP Lett. 35, 20 (1982):

Phase transition into a magnetically ordered state cooling

= K = K P=85% P=55% Merkulov, Papava, Ponomarenko, Vasiliev, Can.J.Phys. 66, 135 (1988) antiferromagnetic Theory for GaAs (laboratory frame): Experiment and theory (rotating frame, CaF 2, LiH): Abragam group, 1970s Ferromagnetic or antiferromagnetic Nuclear spin ordering

V. L. Korenev, PRL 99, (2007).

P N max =65%

B Nf S0S0 I.A.Merkulov, G.Alvarez, D.R.Yakovlev, T.C.Schultess, PRB 81, (2010)

B Nf S0S0 Mean nuclear spin grows at the expense of nuclear spin fluctuations. At the same time, fluctuations are suppressed

Summary 1)Dynamical polarization of nuclei in semiconductors produces very strong, classical magnetic fields affecting electron spins. This can be directly observed in optical spectra of individual quantum dots. 2) Shifts of electron spin levels in nuclear fields result in nonlinear effects and a theoretical possibility of self-polarization. 3) The nuclear spin system can be cooled down to microkelvins. If we manage to cool it further down, we could freeze nuclear spins and obtain a nuclear antiferromagnet with strongly reduced fluctuations. 4) To do this, we have to reach high nuclear polarization, which is not so easy…