ガンマ線強度関数法によるアプローチ H. Utsunomiya (Konan University) Outline 1.Methodology of the  SF method 2.Applications to unstable nuclei along the valley of  -stability.

Slides:



Advertisements
Similar presentations
Photodisintegration and nuclear statistical quantities in astrophysics H. Utsunomiya (Konan University) SNP2008, Ohio University, July 8-11, 2008 Outline.
Advertisements

HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Giant resonances, exotic modes & astrophysics
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
n_TOF meeting November 2007, BARI.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
(p,g) reaction via transfer reaction of mirror nuclei and direct measurement of 11C(p,g)12N at DRAGON Bing Guo For nuclear astrophysics group China Institute.
I. Dillmann Institut für Kernphysik, Forschungszentrum Karlsruhe KADoNiS The Sequel to the “Bao et al.” neutron capture compilations.
Astrophysical S(E)-factor of the 15 N(p,α) 12 C reaction at sub-Coulomb energies via the Trojan-horse method Daniel Schmidt, Liberty University Cyclotron.
Experimental Nuclear Physics in ATOMKI Debrecen. Cyclotron laboratory in ATOMKI, Debrecen.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Joint IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies Student’s presentation Calculation of correction factors for neutron.
E.Chiaveri on behalf of the n_TOF Collaboration n_TOF Collaboration/Collaboration Board Lisbon, 13/15 December 2011 Proposal for Experimental Area 2(EAR-2)
Futoshi Minato JAEA Nuclear Data Center, Tokai Theoretical calculations of beta-delayed neutrons and sensitivity analyses 1.
J.N. Wilson, EFNUDAT workshop, CERN, August 2010 Level Densities, Decay Probabilities and Cross sections in the Actinide Region J.N. Wilson Institut de.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Structures of Exotic 131,133 Sn Isotopes for r-process nucleosynthesis Shisheng Zhang 1,2 ( 张时声 ) 1. School of Physics and Nuclear Energy Engineering,
Neutron capture at the s-process branching points 171 Tm and 204 Tl Spokespersons: C. Guerrero (U.Sevilla/CERN) and C. Domingo-Pardo (CSIC-IFIC) Close.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Nuclear astrophysical reactions by unstable beams and Progress of BRIF and BRIFII 不稳定核束核天体物理反应 北京放射性核束装置的进展 Wei-ping Liu 柳卫平 China.
Jutta Escher Nuclear Theory & Modeling Lawrence Livermore National Lab Jutta Escher Nuclear Theory & Modeling Lawrence Livermore National Lab UCRL pending.
Photonuclear reactions in astrophysics
Incomplete fusion studies near Coulomb barrier Pragya Das Indian Institute of Technology Bombay Powai, Mumbai , India.
Neutron capture cross section measurements for nuclear astrophysics at n_TOF Michael Heil on behalf of the n_TOF collaboration Outline   The CERN n_TOF.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
Astrophysical p-process: the synthesis of heavy, proton-rich isotopes Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary Carpathian Summer.
Gamma-ray strength functions obtained with the Oslo method Ann-Cecilie Larsen July 8, 2008 Workshop on Statistical Nuclear Physics and Applications in.
Systematic study of isovector dipole mode up to A=50 KEK 研究会「原子核・ハドロン物理 : 横断研究会」 KEK, 2007 年 11 月 19 日 -21 日 稲倉恒法 中務孝 矢花一浩 ( 筑波大学 ) ( 理研 ) ( 筑波大学 )
Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) P. Adrich, A. Kimkiewicz et al., Phys.Rev.
Pygmy Dipole Resonance in 64Fe
The NSCL is funded in part by the National Science Foundation and Michigan State University. 55 Co S800 PID - 56 Ni(d, 3 He) 55 Co Target (p / d) 56 Ni.
Athens, July 9, 2008 The two-step  cascade method as a tool for studying  -ray strength functions Milan Krtička.
Walid DRIDI, CEA/Saclay n_TOF Collaboration Meeting, Paris December 4-5, 2006 DAPNIA Neutron capture cross section of 234 U Walid DRIDI CEA/Saclay for.
Determination of radiative neutron capture cross sections for unstable nuclei by Coulomb dissociation H. Utsunomiya (Konan University) Outline 1.Methodology.
Advanced Burning Building the Heavy Elements. Advanced Burning 2  Advanced burning can be (is) very inhomogeneous  The process is very important to.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Slow neutron captures in stars
Institut für Theoretische Physik, Universität Giessen LOW-ENERGY MULTIPOLE EXCITATIONS AND NUCLEOSYNTHESIS Nadia Tsoneva INTERNATIONAL SCHOOL OF NUCLEAR.
NUCLEAR LEVEL DENSITIES NEAR Z=50 FROM NEUTRON EVAPORATION SPECTRA IN (p,n) REACTION B.V.Zhuravlev, A.A.Lychagin, N.N.Titarenko State Scientific Center.
ANC Techniques and r-matrix analysis Santa Fe, April 2008 ANC Techniques and r-matrix analysis Grigory Rogachev.
Nuclear Structure SnSn P,n p n (  )‏ ( ,Xn)‏ M1E1 p,nn X λ ?E1 ExEx  Study of the pygmy dipole resonance as a function of deformation.
Three-body radiative capture reactions in astrophysics L.V. Grigorenko K.-H. Langanke and M. Zhukov FLNR, JINR, Dubna and GSI, Darmstadt.
ExperimentSpokesmanGoalRunning time Thesis? Scissors ModeTonchevAnalyze Scissors Mode excitations in actinide nuclei Pgymy DipoleTonchevAnalyze evolution.
Impact of phonon coupling on the radiative nuclear reaction characteristics O. Achakovskiy 1, A. Avdeenkov 1, S. Kamerdzhiev 2 Moscow| October 2015 | O.
Lawrence Livermore National Laboratory Nicholas Scielzo Physics Division, Physical and Life Sciences LLNL-PRES Lawrence Livermore National Laboratory,
The concept of compound nuclear reaction: a+B  C  d+F The particle transmission coefficients T are usually known from cross sections of inverse reactions.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
CERN-INTC /INTC-P-415 Tackling the s-process stellar neutron density via the 147 Pm(n,  ) reaction Spokespersons: C. Guerrero (U. Sevilla) and.
Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics V.Varlamov, EMIN-2009 (21 – 26 September) 1 V.A. Chetvertkova, B.S. Ishkhanov,
Types of Radioactive Decay Kinetics of Decay Nuclear Transmutations
First Gogny conference, TGCC December 2015 DAM, DIF, S. Péru QRPA with the Gogny force applied to spherical and deformed nuclei M. Dupuis, S. Goriely,
Santa Tecla, 2-9 October 2005Marita Mosconi,FZK1 Re/Os cosmochronometer: measurements of relevant Os cross sections Marita Mosconi 1, Alberto Mengoni 2,
北京航空航天大学核物理实验研究介绍 北京航空航天大学 核科学与技术系 2012 年 7 月. 报告内容  北京航空航天大学核物理实验组简介  在 RIBLL1 上的一些实验设想.
Pion-Induced Fission- A Review Zafar Yasin Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad, Pakistan.
Observation of new neutron-deficient multinucleon transfer reactions
Adam Maj IFJ PAN Krakow Search for Pigmy Dipole Resonance in 68 Ni RISING experiment in GSI EWON Meeting Prague, May, 2007.
Coulomb breakup of 22 C and 31 Ne N. Kobayashi Department of Physics, Tokyo Institute of Technology.
Integrated Science Mr. Danckers Chapter 10.
SFB 634 *Supported by the DFG within SFB 634 and 446 JAP 113/267/0-2 Complete Dipole Strength Distributions from High-Resolution Polarized Proton Scattering.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Neutron induced reactions: Experiments and Theory 1.BANG! Stuff with light nuclei (BBN, Coul_diss exp, C x-sections) 2.The Metals & the s-process (canonical.
1 Cross sections of neutron reactions in S-Cl-Ar region in the s-process of nucleosynthesis C. Oprea 1, P. J. Szalanski 2, A. Ioan 1, P. M. Potlog 3 1Frank.
The neutron capture cross section of the s-process branch point 63Ni
gamma-transmission coefficients are most uncertain values !!!
Resonance Reactions HW 34 In the 19F(p,) reaction:
Elastic alpha scattering experiments
Phantom Crossing DGP Gravity
Presentation transcript:

ガンマ線強度関数法によるアプローチ H. Utsunomiya (Konan University) Outline 1.Methodology of the  SF method 2.Applications to unstable nuclei along the valley of  -stability 3. comments on a versatile application based on Coulomb dissociation experiments 2011 年度核データ研究会プログラム 2011 年 11 月 16 日 ( 水 ) – 17 日 ( 木 ) 日本原子力研究開発機構テクノ交流館リコッティ Approach by the  -ray strength function method

Collaborators H. Utsunomiya a), H. Akimune a), T. Yamagata a), H. Toyokawa c), H. Harada d), F. Kitatani d), Y. -W. Lui e), S. Goriely b) I. Daoutidis b), D. P. Arteaga f), S. Hilaire g), and A. J. Koning h) a)Department of Physics, Konan University, Japan b)Institut d’Astronomie et d’Astrophysique, ULB, Belgium c) National Institute of Advanced Industrial Science and Technology, Japan d) Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki , Japan e) Cyclotron Institute, Texas A&M University, USA f) Institut de Physique Nucléaire, Université Paris-Sud, France g) CEA,DAM, DIF, Arpajon, France h) Nuclear Research and Consultancy Group, The Netherlands

Radiative neutron capture cross sections for unstable nuclei in nuclear engineering and nuclear astrophysics Direct measurements at CERN n-TOF, LANSCE-DANCE, Frankfurt-FRANZ and J-Parc ANNRI facilities can target some of unstable nuclei along the valley of  -stability if samples can be prepared. ---> s-process Indirect experimental method is called in for unstable nuclei along the valley of  -stability ---> s-process, neutron-rich region ---> r-process surrogate reaction technique ANY OTHER?

follows the statistical model of the radiative neuron capture in the formation of a compound nucleus and its decay by using experimentally-constrained  SF.  -ray strength function method H. Utsunomiya et al., PRC80 (2009) n + A X A+1 X E, J,  A X(n,  ) A+1 X Radiative neutron capture continuum  SF NLD decay process

Total  transmission coefficient  - ray strength function nuclear level density X=E, M =1, 2, …  SF method neutron resonance spacing low-lying levels source of uncertainty Hauser-Feshbach model cross section for A X(n,  ) A+1 X After integrating over J and π

 -ray strength function: nuclear statistical quantity interconnecting (n,  ) and ( ,n) cross sections in the HF model calculation n+ A X A+1 X E, J,  A X(n,  ) A+1 X A+1 X( ,n) A X Photoneutron emission Radiative neutron capture Brink Hypothesis continuum

SnSn GDR PDR, M1 Structure of  -ray strength function Primary strength E1 strength in the low- energy tail of GDR Extra strengths 6 – 10 MeV

SnSn ( ,n) GDR Methodology of  SF method STEP 1 Measurements of ( ,n) c.s. near Sn A-1 A A ( ,n)  SF STEP 1

SnSn Methodology of  SF method STEP 2 Normalization of  SF Extrapolation of  SF by models SnSn ( ,n) GDR A-1 A A ( ,n)  SF STEP 1

JUSTIFICATION BY REPRODUCING KNOWN (n,  ) C.S. Methodology of  SF method STEP 2 known (n,  ) SnSn SnSn ( ,n) GDR A-1 A A ( ,n)  SF STEP 1

neutron capture by unstable nucleus Methodology of  SF method STEP 3 (n,  ) to be determined A+1 A+2 ( ,n) STEP 3 A+1 X(n,  ) A+2 X known (n,  ) A-1 A A ( ,n) STEP 1 STEP 2 Extrapolation is made in the same way as for stable isotopes. ( ,n) GDR SnSn STEP 1 STEP 2  SF

6 6 Sn h d y 108 Pd y d 96 Zr y 80 Se d d Applications LLFP (long lived fission products) nuclear waste Astrophysical significance Present ( ,n) measurements Existing (n,  ) data H.U. et al., PRC82 (2010) H. Utsunomiya et al., PRC80 (2009) H.U. et al., PRL100(2008) PRC81 (2010) To be published F. Kitatani et al. (n,  ) c.s. to be deduced

Inverse Compton Scattering  = E e /mc 2 “photon accelerator” Laser Compton scattering  -ray beam

=1064, 532 nm AIST (National Institute of Advanced Industrial Science and Technology)

Detector System Triple-ring neutron detector 20 3 He counters (4 x 8 x 8 ) embedded in polyethylene

6 6 Sn h d Applications 7 H. Utsunomiya et al., PRC, in press (2011) H. Utsunomiya et al., PRC80 (2009)

STEP 1 Measurement of ( ,n) cross sections Sn isotopes

HFB+QRPA E1 strength supplemented with a pygmy E1 resonance in Gaussian shape E o ~ 8.5 MeV,  ~ 2.0 MeV,  o ~ 7 mb ~ 1% of TRK sum rule of GDR STEP 2 – Extrapolation of  SF to the low-energy region HFB+QRPA + PDR

STEP 2 – Justification of the extrapolated  SF

STEP 3 – Statistical model calculations of (n,  ) cross sections for radioactive nuclei 121 Sn[T 1/2 =27 h] 123 Sn[T 1/2 =129 d] Uncertainties: 30-40% Uncertainties: a factor of 3

93 Zr[T 1/2 =1.5×10 6 y] Results for Zr isotopes long-lived fission product nuclear waste

95 Zr[T 1/2 =64 d] s-process branching 30-40% uncertainties

107 Pd[T 1/2 =6.5×10 6 y] long-lived fission product nuclear waste 30-40% uncertainties stem from NLD

Coulomb dissociation in the  SF method (n,  ) to be determined by  SF method A A A+1 ( ,n) by Coulomb dissociation s-process branching nucleus

s-process branching nuclei F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

Coulomb dissociation experiments s-process branching nucleihalflife(yr)Coulomb dissociation (n,  ) data 134Cs,135Cs2.0652, 2.3× Cs,135Cs,134Cs133Cs 152Eu* Eu, 152Eu151Eu 154Eu,155Eu8.593, Eu,155Eu,154Eu153Eu 160Tb Tb,160Tn159Tb 163Ho Ho,166Ho165Ho 170Tm,171Tm0.352, Tm,171Tm,170Tm169Tm 179Ta Ta,182Ta181Ta 204Tl Tl,204Tl203Tl 11 branching nuclei 18 Coulomb dissociations F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

Ambitious application of the  SF method to the r-process The astrophysical significance is controversial ! BUT this would be the first application to a very neutron-rich nucleus. A pioneering work is in progress. 1) A systematic study of the  SF for Sn isotopes 116Sn,…., 124Sn (7 stable) → → → 132Sn 132Sn( ,n) data: GSI Coulomb dissociation data for 132Sn 131 Sn(n,  ) 132 Sn cross sections in the r-process nucleosynthesis

Summary  SF method: (n,  ) c.s. for unstable nuclei 1. Nuclear Physics Experiment: ( ,n) c.s. measurements real photons for stable nuclei virtual photons for unstable nuclei (CD) 2. Nuclear Theory: models of  SF models of NLD primary strength: low-energy E1 of GDR extra strengths: PDR, M1 3. Coulomb dissociation experiments play a key role in a versatile application of the  SF method. SAMURAI + RIKEN-RIBF ALADIN +

Neutron beam Photon beamRI beam Determination of (n,  ) CS for unstable nuclei 直接測定 ガンマ線強度関数法 ( ,n) (n,  ) 原子力核データ、宇宙核物理( s-process ) along the valley of  -stability 宇宙核物理 r-process p-process far from stability

Comparison with the surrogate reaction technique Forssèn et al., PRC75, (2007) 93Zr(n,  )94Zr 95Zr(n,  )96Zr 1. The surrogate reaction technique gives larger cross sections by a factor of ~ 3 than the  SF method. The surrogate reaction technique gives similar cross sections to those given by the  SF method provided that a choice is made of the Lorentian type of  SF. Zr isotopes